【題目】在△ABC中,∠ABC45°,∠C60°,O經(jīng)過點(diǎn)A,B,與BC交于點(diǎn)D,連接AD

(Ⅰ)如圖.若ABO的直徑,交AC于點(diǎn)E,連接DE,求∠ADE的大。

(Ⅱ)如圖,若OAC相切,求∠ADC的大小.

【答案】(Ⅰ)∠ADE15°;(Ⅱ)∠ADC75°

【解析】

(Ⅰ)連接BE,根據(jù)三角形內(nèi)角和可求∠BAC的度數(shù),由圓周角定理可得∠AEB90°,即可求∠ABE=∠ADE15°;

(Ⅱ)連接OA,OD,由切線的性質(zhì)可得∠OAC90°,根據(jù)同弧所對的圓心角是圓周角的2倍可得∠AOD90°,由等腰三角形的性質(zhì)可求∠OAD=∠DAC45°,根據(jù)三角形內(nèi)角和可求∠ADC的度數(shù).

解:(Ⅰ)如圖,連接BE

∵∠ABC45°,∠C60°,

∴∠BAC75°,

AB是直徑,

∴∠AEB90°,

∴∠ABE=∠AEB﹣∠BAC15°,

∵∠ABE=∠ADE,

∴∠ADE15°,

(Ⅱ)連接OAOD,

ACO的切線,

∴∠OAC90°,

∵∠ABC45°

∴∠AOD90°,且OAOD

∴∠OAD45°

∴∠DAC=∠OAC﹣∠DAO45°,且∠C60°

∴∠ADC75°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中,裝有除顏色外其余均相同的紅、藍(lán)兩種球,已知其中紅球有3個(gè),且從中任意摸出一個(gè)是紅球的概率為0.75.

(1)根據(jù)題意,袋中有 個(gè)藍(lán)球.

(2)若第一次隨機(jī)摸出一球,不放回,再隨機(jī)摸出第二個(gè)球.請用畫樹狀圖或列表法求“摸到兩球中至少一個(gè)球?yàn)樗{(lán)球(記為事件A)”的概率P(A).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于世界人口增長、水污染以及水資源浪費(fèi)等原因,全世界面臨著淡水資源不足的問題,我國是世界上嚴(yán)重缺水的國家之一,人均占水量僅為2400m3左右,我國已被聯(lián)合國列為13個(gè)貧水國家之一,合理利用水資源是人類可持續(xù)發(fā)展的當(dāng)務(wù)之急,而節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護(hù)水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門對某小區(qū)的20戶居民的月用水量進(jìn)行了調(diào)查,數(shù)據(jù)如下:(單位:t

6.7

8.7

7.3

11.4

7.0

6.9

11.7

9.7

10.0

9.7

7.3

8.4

10.6

8.7

7.2

8.7

10.5

9.3

8.4

8.7

整理數(shù)據(jù) 按如下分段整理樣本數(shù)據(jù)并補(bǔ)至表格:(表1

用水量xt

6.0≤x7.5

7.5≤x9.0

9.0≤x10.5

10.5≤x12

人數(shù)

a

6

b

4

分析數(shù)據(jù),補(bǔ)全下列表格中的統(tǒng)計(jì)量;(表2

平均數(shù)

中位數(shù)

眾數(shù)

8.85

c

d

得出結(jié)論:

1)表中的a   ,b   c   ,d   

2)若用表1中的數(shù)據(jù)制作一個(gè)扇形統(tǒng)計(jì)圖,則9.0≤x10.5所示的扇形圓心角的度數(shù)為   度.

3)如果該小區(qū)有住戶400戶,請根據(jù)樣本估計(jì)用水量在6.0≤x9.0的居民有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.

(1)求甲、乙兩種型號設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣,0),點(diǎn)B(0,1)把△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得△A'B'O,點(diǎn)A,B旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).

(1)如圖①,當(dāng)點(diǎn)A′,BB′共線時(shí),求AA′的長.

(2)如圖②,當(dāng)α=90°,求直線ABAB′的交點(diǎn)C的坐標(biāo);

(3)當(dāng)點(diǎn)A′在直線AB上時(shí),求BB′與OA′的交點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DE在線段BC上,ADE是等邊三角形,且∠BAC=120°

1)求證:ABD∽△CAE;

2)若BD=2,CE=8,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。

(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點(diǎn)的對應(yīng)點(diǎn)B、C的坐標(biāo);

(3)如果OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對應(yīng)點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨若移動終端設(shè)的升級換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):A .和同學(xué)親友聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)査,得到如下圖表(部分信息未給出:

根據(jù)以上信息解答下列問題:

(1)這次被調(diào)查的學(xué)生有多少人?

(2)求表中 的值,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)約有名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購物或玩游戲的共有多少人?

并根據(jù)以上調(diào)査結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=6cm,AC=8cm,點(diǎn)P從點(diǎn)C開始沿射線CA方向以1cm/s的速度運(yùn)動;同時(shí),點(diǎn)Q也從點(diǎn)C開始沿射線CB方向以3cm/s的速度運(yùn)動.

(1)幾秒后PCQ的面積為3cm2?此時(shí)PQ的長是多少?(結(jié)果用最簡二次根式表示)

(2)幾秒后以AB、PQ為頂點(diǎn)的四邊形的面積為22cm2?

查看答案和解析>>

同步練習(xí)冊答案