【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DAC上,EBA的延長(zhǎng)線(xiàn)上,BD=CE,BD的延長(zhǎng)線(xiàn)交CE于點(diǎn)F。求證:BFCE

【答案】見(jiàn)解析

【解析】

由∠BAC=90°可得出∠CAE=90°,根據(jù)AB=ACBD=CE可證出RtBADRtCAEHL),根據(jù)全等三角形的性質(zhì)可得出∠E=ADB,進(jìn)而可得出∠CDF=E,再根據(jù)∠E+ACE=90°結(jié)合三角形內(nèi)角和定理可得出∠CFD=90°,即BFCE

證明:∵∠BAC=90°,
∴∠CAE=90°
RtBADRtCAE中,

,
RtBADRtCAEHL),
∴∠E=ADB
∵∠ADB=CDF,
∴∠CDF=E
∵∠E+ACE=90°,
∴∠CDF+DCF=90°,
∴∠CFD=90°,即BFCE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線(xiàn)交⊙O于點(diǎn)C,過(guò)點(diǎn)C作AE的垂線(xiàn),垂足為D,直線(xiàn)DC與AB的延長(zhǎng)線(xiàn)交于點(diǎn)P.

(1)判斷直線(xiàn)PC與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若tan∠P=,AD=6,求線(xiàn)段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABF≌△CDE.

(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);

(2)若BD=10,EF=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只不透明的袋子中裝有3個(gè)球,球上分別標(biāo)有數(shù)字0,1,2,這些球除了數(shù)字外其余都相同,甲、以?xún)扇送婷蛴螒,?guī)則如下:先由甲隨機(jī)摸出一個(gè)球(不放回),再由乙隨機(jī)摸出一個(gè)球,兩人摸出的球所標(biāo)的數(shù)字之和為偶數(shù)時(shí)則甲勝,和為奇數(shù)時(shí)則乙勝.

(1)用畫(huà)樹(shù)狀圖或列表的方法列出所有可能的結(jié)果;

(2)這樣的游戲規(guī)則是否公平?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC中,A(﹣21)、B(﹣4,﹣2)、C(﹣1,﹣3),ABCABC平移之后得到的圖,并且C的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為(4,1)。

1A、B.兩點(diǎn)的坐標(biāo)分別為A      、B      ;

2)請(qǐng)作出ABC平移之后的圖形ABC;

3)求A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC中,BD平分∠ABC,CE平分∠ACB的鄰補(bǔ)角∠ACM,若∠BDC=130°,∠E=50°,則∠BAC的度數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線(xiàn)于點(diǎn)G,連接AE交CD于點(diǎn)F,且EG=FG,連接CE.

(1)求證:△ECF∽△GCE;

(2)求證:EG是⊙O的切線(xiàn);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,ABAC10cm,BC8cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線(xiàn)段BC上以3cm/s的速度由點(diǎn)BC點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由點(diǎn)CA點(diǎn)運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種球共20個(gè),某學(xué)習(xí)小組做摸球?qū)嶒?yàn),每次摸出一個(gè)球再把它放回袋中,不斷重復(fù),下表是一次摸球?qū)嶒?yàn)的一組統(tǒng)計(jì)數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

1 000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近多少?

(2)試估算口袋里黑、白兩種顏色的球各有多少個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案