【題目】已知ABC為等邊三角形,點D、E分別在直線AB、BC上,且AD=BE.
(1)如圖1,若點D、E分別是AB、CB邊上的點,連接AE、CD交于點F,過點E作∠AEG=60°,使EG=AE,連接GD,則∠AFD= (填度數(shù));
(2)在(1)的條件下,猜想DG與CE存在什么關(guān)系,并證明;
(3)如圖2,若點D、E分別是BA、CB延長線上的點,(2)中結(jié)論是否仍然成立?請給出判斷并證明.
【答案】(1)∠AFD= 60°(2)DG=CE,DG//CE;(3)詳見解析
【解析】
(1) 證明△ABE≌△CAD(SAS),可得 ∠BAE=∠ACD,繼而根據(jù)等邊三角形的內(nèi)角為60度以及三角形外角的性質(zhì)即可求得答案;
(2)由(1)∠AFD=60°,根據(jù)∠AEG=60°,可得GE//CD ,繼而根據(jù)GE=AE=CD,可得四邊形GECD是平行四邊形,根據(jù)平行四邊形的性質(zhì)即可得DG=CE,DG//CE;
(3)延長EA交CD于點F,先證明△ACD≌△BAE,根據(jù)全等三角形的性質(zhì)可得 ∠ACD=∠BAE, CD=AE,繼而根據(jù)三角形外角的性質(zhì)可得到∠EFC= 60°,從而得∠EFC=∠GEF,得到GE//CD,繼而證明四邊形GECD是平行四邊形 ,根據(jù)平行四邊形的性質(zhì)即可得到DG=CE,DG//CE.
(1) ∵△ABC是等邊三角形,
∴AB=AC,∠BAC=∠ABC=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴∠BAE=∠ACD,
∵∠BAE+∠EAC=∠BAC=60°,
∴∠ACD+∠EAC=60°,
∴∠AFD=∠ACD+∠EAC=60°,
故答案為:60° ;
(2)DG=CE,DG//CE,理由如下:
∵△ABC是等邊三角形,
∴AB=AC,∠BAC=∠ABC=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴AE=CD,∠BAE=∠ACD,
∵∠BAE+∠EAC=∠BAC=60°,
∴∠ACD+∠EAC=60°,
∴∠AFD=∠ACD+∠EAC=60°,
又∵∠AEG=60°,
∴∠AFD=∠AEG,
∴GE//CD ,
∵GE=AE=CD,
∴四邊形GECD是平行四邊形,
∴DG=CE,DG//CE;
(3)仍然成立
延長EA交CD于點F,
∵△ABC為等邊三角形,
∴AC=AB,∠BAC=∠ABC=60°,
∴∠DAC=∠ABE=120°,
在△ACD和△BAE中,
,
∴△ACD≌△BAE(SAS),
∴∠ACD=∠BAE, CD=AE,
∴∠EFC=∠DAF+∠BDC=∠BAE +∠AEB=∠ABC= 60°,
∴∠EFC=∠GEF,
∴GE//CD,
∵GE=AE=CD,
∴四邊形GECD是平行四邊形 ,
∴DG=CE,DG//CE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DE∥AM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國元朝朱世杰所著的《算學啟蒙》(1299年)一書中有一道題目是:“今有良馬日行二百四十里,駑馬日行一百五十里.駑馬先行一十二日,問良馬幾何日追及之.”譯文是:快馬每天走240里,慢馬每天走150里.慢馬先走12天,快馬幾天可以追上慢馬?
(1)設(shè)快馬x天可以追上慢馬,請你將如下的線段圖補充完整:
(2)根據(jù)(1)中線段圖所反映的數(shù)量關(guān)系,列方程解決問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 是⊙的直徑,點是⊙上一點, 與過點的切線垂直,垂足為點,直線與的延長線相交于點,弦平分∠,交于點,連接.
(1)求證: 平分∠;
(2)求證:PC=PF;
(3)若,AB=14,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OAB是邊長為4的等邊三角形,OD是AB邊上的高,點P是OD上的一個動點,若點C的坐標是,則PA+PC的最小值是_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減。虎a+b+c>0中,其中正確的有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于點A、B,AB=2,
(1)求k的值;
(2)若反比例函數(shù)y=的圖象上存在一點C,則當△ABC為直角三角形,請直接寫出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:
方案一:買一件甲種商品就贈送一件乙種商品;
方案二:按購買金額打八折付款.
某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2(元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說明怎樣購買最實惠.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com