若等腰梯形的底角等于60°。它的兩底分別為12和19,則它的一腰的長(zhǎng)為_(kāi)_______
7
解:如圖所示,等腰梯形ABCD中,

∵AD=12cm,BC=19cm,∠B=∠C=60°,
∴過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,則,
在Rt△ABE中,,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AD⊥BC于D,點(diǎn)D,E,F(xiàn)分別是BC,AB,AC的中點(diǎn).求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形的邊長(zhǎng)為分別交于點(diǎn),在上任取兩點(diǎn),那么圖中陰影部分的面積是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

ABCD中,AD=5cm,AB=3cm。AE平分∠BAD交BC于點(diǎn)E,則CE的長(zhǎng)等于    (     )
A.1cmB.2cmC.3cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC="90°" ,  ②OC=OE,  ③tan∠OCD =  ,④ 中,正確的有【   】

A.1個(gè)         B.2個(gè)      C.3個(gè)         D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,梯形ABCD中,AD∥BC,∠ABC=90°.
(1)如圖1,若AC⊥BD,且AC=5,BD=3,則S梯形ABCD                ;
(2)如圖2,若DE⊥BC于E,BD=BC,F(xiàn)是CD的中點(diǎn),試問(wèn):∠BAF與∠BCD的大小關(guān)系如何?請(qǐng)寫(xiě)出你的結(jié)論并加以證明;

(3)在(2)的條件下,若AD=EC,     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,把菱形ABCD沿AH折疊,使B點(diǎn)落在BC上的E點(diǎn)處,若∠B=700,則∠EDC的大小為
A.100B.150C.200D.300

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,菱形ABCD(圖1)與菱形EFGH(圖2)的形狀、大小完全相同.
(1)請(qǐng)從下列序號(hào)中選擇正確選項(xiàng)的序號(hào)填寫(xiě);
①點(diǎn)E,F(xiàn),G,H;②點(diǎn)G,F(xiàn),E,H;③點(diǎn)E,H,G,F(xiàn);④點(diǎn)G,H,E,F(xiàn).
如果圖1經(jīng)過(guò)一次平移后得到圖2,那么點(diǎn)A,B,C,D對(duì)應(yīng)點(diǎn)分別是  ;
如果圖1經(jīng)過(guò)一次軸對(duì)稱(chēng)后得到圖2,那么點(diǎn)A,B,C,D對(duì)應(yīng)點(diǎn)分別是  
如果圖1經(jīng)過(guò)一次旋轉(zhuǎn)后得到圖2,那么點(diǎn)A,B,C,D對(duì)應(yīng)點(diǎn)分別是  ;
(2)①圖1,圖2關(guān)于點(diǎn)O成中心對(duì)稱(chēng),請(qǐng)畫(huà)出對(duì)稱(chēng)中心(保留畫(huà)圖痕跡,不寫(xiě)畫(huà)法);
②寫(xiě)出兩個(gè)圖形成中心對(duì)稱(chēng)的一條性質(zhì):   .(可以結(jié)合所畫(huà)圖形敘述).

圖1                          圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)C在x的正半軸上,點(diǎn)A在y軸的正半軸上,且OA=7,OC=18,現(xiàn)將點(diǎn)C向上平移7個(gè)單位長(zhǎng)度再向左平移4單位長(zhǎng)度,得到對(duì)應(yīng)點(diǎn)B。

(1)求點(diǎn)B的坐標(biāo)及四邊形ABCO的面積;
(2)若點(diǎn)P從點(diǎn)C以2個(gè)單位長(zhǎng)度/秒的速度沿CO方向移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)O以每秒1單位長(zhǎng)度的速度沿OA方向移動(dòng),設(shè)移動(dòng)的時(shí)間為t秒(0<t<7),四邊形OPBA與△OQB的面積分別記為S四邊形OPBA,S△OQB
①用含t的式子表示
②是否存在一段時(shí)間,使 < S△OQB,若存在,求出t的取值范圍,若不存在,試說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案