【題目】如圖,正方形ABCD的對角線AC上有一點E,且CE4AE,點FDC的延長線上,連接EF,過點EEGEF,交CB的延長線于點G,連接GF并延長,交AC的延長線于點P,若AB5,CF2,則線段EP的長是_____

【答案】

【解析】

如圖,作FHPEH.利用勾股定理求出EF,再證明△CEF∽△FEP,可得EF2ECEP,由此即可解決問題.

如圖,作FHPEH

∵四邊形ABCD是正方形,AB5,

AC5,∠ACD=∠FCH45°,

∵∠FHC90°,CF2,

CHHF

CE4AE,

EC4AE,

EH5,

RtEFH中,EF2EH2+FH2=(52+(252,

∵∠GEF=∠GCF90°,

E,G,F,C四點共圓,

∴∠EFG=∠ECG45°,

∴∠ECF=∠EFP135°,

∵∠CEF=∠FEP,

∴△CEF∽△FEP,

,

EF2ECEP

EP

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C,D為⊙O上的點且∠ABC=∠DBC,過CCEBDBD的延長線于點E

1)求證:CE是⊙O的切線.

2)若FOB的中點,FGOBCE于點G,FG,tanABC,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形OABC在直角坐標系中的位置如圖所示,A、C兩點的坐標分別為A10,0)、C0,3),直線BC相交于點D,拋物線y=ax2+bx經(jīng)過A、D兩點.

1)求拋物線的解析式;

2)連接AD,試判斷△OAD的形狀,并說明理由.

3)若點P是拋物線的對稱軸上的一個動點,對稱軸與ODx軸分別交于點M、N,問:是否存在點P,使得以點P、OM為頂點的三角形與△OAD相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,分別以正方形的三邊為直徑在正方形內(nèi)部作半圓,則陰影部分的面積之和是( 。

A.8B.4C.16πD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境:

在綜合與實踐課上,老師讓同學們以“等腰三角形的剪拼”為主題開展數(shù)學活動.如圖1,在△ABC中,ABAC10cm,BC16cm.將△ABC沿BC邊上的中線AD剪開,得到△ABD和△ACD

操作發(fā)現(xiàn):

1)樂學小組將圖1中的△ACD以點D為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使得A'C'AD,得到圖2,A'C'AB交于點E,則四邊形BEC'D的形狀是   

2)縝密小組將圖1中的△ACD沿DB方向平移,A'D'AB交于點M,A'C'AD交于點N,得到圖3,判斷四邊形MNDD'的形狀,并說明理由.

實踐探究:

3)縝密小組又發(fā)現(xiàn),當(2)中線段DD'的長為acm時,圖3中的四邊形MNDD'會成為正方形,求a的值.

4)創(chuàng)新小組又把圖1中的△ACD放到如圖4所示的位置,點A的對應(yīng)點A'與點D重合,點D的對應(yīng)點D'BD的延長線上,再將△A'C'D'繞點D逆時針旋轉(zhuǎn)到如圖5所示的位置,DD'AB于點P,DC'AB于點Q,DPDQ,此時線段AP的長是   cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)購買甲、乙兩種樹苗進行綠化,購買一棵甲種樹苗的價錢比購買一棵乙種樹苗的價錢多 10 元錢,已知購買 20 棵甲種樹苗、30 棵乙種樹苗共需 1 200 元錢.

1)求購買一棵甲種、一棵乙種樹苗各多少元?

2)社區(qū)決定購買甲、乙兩種樹苗共 400 棵,總費用不超過 10 600 元,那么該社區(qū)最多可以購買多少棵甲種樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDEBC邊上一點,AB=AEAE平分DAB,∠EAC=25°,AED的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,ADBC D(其中 BD>CD),BEAC EAD BE 相交于點 F,直線 AD △BCF 的外接圓 O 交于點 H,點 M 在圓 O 上,滿足弧 HM= CF,連接 FM

1)求證:AF=CM

2)若∠ABE=45°,FH ,圓O的直徑為,求BF的值.

查看答案和解析>>

同步練習冊答案