【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽. 并從參加比賽的學(xué)生中隨機(jī)抽取部分學(xué)生的演講成績進(jìn)行統(tǒng)計(jì)(等級(jí):A:優(yōu)秀,B:良好,C:一般,D:較差),并制作了如下統(tǒng)計(jì)圖表(部分信息未給出):
等級(jí) | 人數(shù) |
A | m |
B | 20 |
C | n |
D | 10 |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息解答下列問題:
(1)這次共抽取了________名參加演講比賽的學(xué)生,統(tǒng)計(jì)圖中a=________,b=________;
(2)若該校學(xué)生共有2000人,如果都參加了演講比賽,請(qǐng)你估計(jì)成績達(dá)到優(yōu)秀的有多少人?
(3)若演講比賽成績?yōu)?/span>A等級(jí)的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從A等級(jí)的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,求抽中一名男生和一名女生的概率.
【答案】(1)50,40,30;(2)200;(3).
【解析】
(1)根據(jù)D等級(jí)的人數(shù)和對(duì)應(yīng)百分比可得抽取的人數(shù),再分別求得等級(jí)B的人數(shù)所占百分比和等級(jí)C的人數(shù)所占百分比即可得出a,b的值;
(2)用等級(jí)A的人數(shù)所占百分比乘以2000即可;
(3)用列表法列出所有情況,再根據(jù)概率公式即可求得.
解:(1)50;40;30;
這次抽取的演講比賽的學(xué)生人數(shù)為10÷20%=50(名),
等級(jí)B的學(xué)生所占百分比為20÷50×100%=40%,
∴a=40.
等級(jí)C的學(xué)生所占百分比為1-10%-20%-40%=30%,
∴b=30.
(2)估計(jì)成績達(dá)到優(yōu)秀的人數(shù)為:2000×10%=200(人);
(3)A等級(jí)的學(xué)生共有50×10%=5(名),其中有2名女生,那么男生有3名,列表分析如下:
女1 | 女2 | 男1 | 男2 | 男3 | |
女1 | 女1女2 | 女1男1 | 女1男2 | 女1男3 | |
女2 | 女2女1 | 女2男1 | 女2男2 | 女2男3 | |
男1 | 男1女1 | 男1女2 | 男1男2 | 男1男3 | |
男2 | 男2女1 | 男2女2 | 男2男1 | 男2男3 | |
男3 | 男3女1 | 男3女2 | 男3男1 | 男3男2 |
由上表可知,一共有20種等可能的結(jié)果,其中抽中一名男生和一名女生的結(jié)果有12種,
∴P(抽中一名男生和一名女生)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷售,那么每天可售出100千克.
小強(qiáng):如果以12元/千克的價(jià)格銷售,那么每天可售出80千克.
小紅:通過調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量(千克)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系.
小強(qiáng):我發(fā)現(xiàn)每天的銷售量在70千克至100千克之間.
那么當(dāng)銷售單價(jià)為何值時(shí),該超市銷售這種水果每天獲取的利潤為320元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①作∠BAC的平分線AM交BC于點(diǎn)D;
②作邊AB的垂直平分線EF,EF與AM相交于點(diǎn)P;
③連接PB,PC.
請(qǐng)你觀察圖形解答下列問題:
(1)線段PA,PB,PC之間的數(shù)量關(guān)系是 ;
(2)若∠ABC=70°,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)E是AD邊上的一個(gè)動(dòng)點(diǎn)(不與A,D重合),EF∥AB交BC于點(diǎn)F,點(diǎn)G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線y=x﹣3與x軸、y軸分別交于點(diǎn)A、B,拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B,且交x軸于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線上一點(diǎn),且點(diǎn)P在AB的下方,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①試求當(dāng)m為何值時(shí),△PAB的面積最大;
②當(dāng)△PAB的面積最大時(shí),過點(diǎn)P作x軸的垂線PD,垂足為點(diǎn)D,問在直線PD上否存在點(diǎn)Q,使△QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標(biāo)若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象過點(diǎn)B(0,1)和C(4,3)兩點(diǎn),與x軸交于點(diǎn)D、點(diǎn)E,過點(diǎn)B和點(diǎn)C的直線與x軸交于點(diǎn)A.
(1)求二次函數(shù)的解析式;
(2)在x軸上有一動(dòng)點(diǎn)P,隨著點(diǎn)P的移動(dòng),存在點(diǎn)P使△PBC是直角三角形,請(qǐng)你求出點(diǎn)P的坐標(biāo);
(3)若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),在x軸上沿x軸正方向以每秒2個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從A點(diǎn)出發(fā),以每秒a個(gè)單位的速度沿射線AC運(yùn)動(dòng),是否存在以A、P、Q為頂點(diǎn)的三角形與△ABD相似?若存在,直接寫出a的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知二次函數(shù)經(jīng)過點(diǎn)B(3,0),C(0,3),D(4,-5)
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點(diǎn),且S△ABP=S△ABC,這樣的點(diǎn)P有幾個(gè)請(qǐng)直接寫出它們的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(x>0)的圖象經(jīng)過菱形OACD的頂點(diǎn)D和邊AC上的一點(diǎn)E,且CE=2AE,菱形的邊長為8,則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com