【題目】如圖,將正方形紙片ABCD折疊,使得點(diǎn)A落在邊CD上的E點(diǎn),折痕為FG.若BG=2cm,DE=3cm,則FG的長為_______.
【答案】3
【解析】
過點(diǎn)G作GQ⊥AD于Q,根據(jù)翻折變換的性質(zhì)可得GF⊥AE,然后求出∠GFQ=∠D,再利用“角角邊”證明△ADE和△GQF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得GF=AE,再利用勾股定理列式求出AE,從而得解.
解:如圖,過點(diǎn)G作GQ⊥AD于Q,則四邊形ABGQ中,QG=AB,
由翻折變換的性質(zhì)得GF⊥AE,
∵∠AFG+∠DAE=90°,∠AED+∠DAE=90°,
∴∠AFG=∠AED,
∵四邊形ABCD是正方形,
∴AD=AB,
∴QG=AD,
在△ADE和△GQF中,
,
∴△ADE≌△GQF(AAS),
∴GF=AE,
∵BG=2cm,DE=3cm,
∴AF=EF=AQ+QF=BG+DE=2+3=5,
在Rt△FDE中,DF=,
∴AD=AF+FD=5+4=9,
在Rt△ADE中,由勾股定理得,AE=,
∴GF的長為3.
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD=∠ABC,補(bǔ)充一個(gè)條件,使得△ABD≌△ABC,則下列選項(xiàng)不符合題意的是( )
A. ∠D=∠CB. ∠DAB=∠CABC. BD=BCD. AD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組.請(qǐng)結(jié)合題意填空,完成本題的解答
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若方程的兩實(shí)數(shù)根x1,x2滿足|x1|+|x2|=x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校選派一部分學(xué)生參加“六盤水市馬拉松比賽”,要為每位參賽學(xué)生購買一頂帽子.商場(chǎng)規(guī)定:凡一次性購買200頂或200頂以上,可按批發(fā)價(jià)付款;購買200頂以下只能按零售價(jià)付款.如果為每位參賽學(xué)生購買1頂,那么只能按零售價(jià)付款,需用900元;如果多購買45頂,那么可以按批發(fā)價(jià)付款,同樣需用900元.問:
(1)參賽學(xué)生人數(shù)x在什么范圍內(nèi)?
(2)若按批發(fā)價(jià)購買15頂與按零售價(jià)購買12頂?shù)目钕嗤,那么參賽學(xué)生人數(shù)x是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC和△CDE都是等腰直角三角形,∠ACB=∠DCE=90°,且點(diǎn)A在ED的延長線上,以DE為直徑的⊙O與AB交于G、H兩點(diǎn),連接BE.
(1)求證:BE是⊙O的切線;
(2)如圖②,連接OB、OC,若tan∠CAD=,試判斷四邊形BECO的形狀,請(qǐng)說明理由;
(3)在(2)的條件下,若BF=,請(qǐng)你求出HG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=-x+2分別交x軸、y軸于點(diǎn)A、B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B.點(diǎn)P是x軸上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作垂直于x軸的直線分別交拋物線和直線AB于點(diǎn)E和點(diǎn)F.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)點(diǎn)A的坐標(biāo)為 .
(2)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.
(3)點(diǎn)P在線段OA上時(shí),若以B、E、F為頂點(diǎn)的三角形與△FPA相似,求m的值.
(4)若E、F、P三個(gè)點(diǎn)中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),稱E、F、P三點(diǎn)為“共諧點(diǎn)”.直接寫出E、F、P三點(diǎn)成為“共諧點(diǎn)”時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的交于點(diǎn),交于點(diǎn),點(diǎn)是的延長線上一點(diǎn),且∠PDB=∠A,連接,.
(1)求證:是的切線.
(2)填空:
①當(dāng)的度數(shù)為______時(shí),四邊形是菱形;
②當(dāng)時(shí),的面積為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com