【題目】已知:如圖,∠D=110°,∠EFD=70°,∠1=∠2,求證:∠3=∠B
證明:
∵∠D=110°,∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥EF( )
又∵∠1=∠2(已知)
∴ ∥ (內(nèi)錯角相等,兩直線平行)
∴EF∥BC( )
∴∠3=∠B( )
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在亞丁灣一海域執(zhí)行護(hù)航任務(wù)的我海軍某軍艦由東向西行駛.在航行到B處時,發(fā)現(xiàn)燈塔A在我軍艦的正北方向500米處;當(dāng)該軍艦從B處向正西方向行駛至達(dá)C處時,發(fā)現(xiàn)燈塔A在我軍艦的北偏東60°的方向.求該軍艦行駛的路程.(計算過程和結(jié)果均不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知n(n≥3,且n為整數(shù))條直線中只有兩條直線平行,且任何三條直線都不交于同一個點.如圖,當(dāng)n=3時,共有2個交點;當(dāng)n=4時,共有5個交點;當(dāng)n=5時,共有9個交點;…依此規(guī)律,當(dāng)共有交點個數(shù)為27時,則n的值為( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達(dá)點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折疊三角形紙片ABC,使點A落在BC邊上的點F,且折痕DE∥BC,若∠A=75°,∠C=60°,則∠BDF=____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=5,AB=4,點E,F(xiàn)在直線AD上,且四邊形BCFE為菱形.若線段EF的中點為點M,則線段AM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,E是BC邊的中點,連接AE,F為CD邊上一點,且滿足∠DFA=2∠BAE.
(1)若∠D=105°,∠DAF=35°.求∠FAE的度數(shù);
(2)求證:AF=CD+CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com