【題目】已知,在以O為原點(diǎn)的直角坐標(biāo)系中,拋物線的頂點(diǎn)為A(1,4),且經(jīng)過(guò)點(diǎn)B(2,3),與x軸交于C、D兩點(diǎn).

(1)求直線OB的函數(shù)表達(dá)式和該拋物線的函數(shù)表達(dá)式;

(2)如圖1,點(diǎn)Px軸上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PFx軸于點(diǎn)F,交直線OB于點(diǎn)E.若PE=3EF,求出P點(diǎn)的橫坐標(biāo);

(3)如圖2,點(diǎn)M是拋物上的一個(gè)動(dòng)點(diǎn),且在直線OB的上方,過(guò)點(diǎn)Mx軸的平行線與直線OB交于點(diǎn)N,T是拋物線對(duì)稱(chēng)軸上一點(diǎn),當(dāng)MN最大且MDT周長(zhǎng)最小時(shí),直接寫(xiě)出T的坐標(biāo).

【答案】(1) y=x2﹣2x+5;(2) P點(diǎn)的橫坐標(biāo)為4﹣; (3) T的坐標(biāo)為(1,3).

【解析】

(1)由B點(diǎn)坐標(biāo)利用待定系數(shù)法可求直線OB解析式,利用頂點(diǎn)式可求得拋物線解析式;

(2)設(shè)P(x,x2-2x+5),則可表示出E點(diǎn)坐標(biāo),由PE=3EF可得到方程解答即可;

(3)當(dāng)MB關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng)時(shí),MN最大,進(jìn)而得出T的坐標(biāo).

(1)設(shè)直線OB解析式為y=kx,由題意可得3=2k,解得k=1.5,

∴直線OB解析式為y=1.5x,

∵拋物線頂點(diǎn)坐標(biāo)為(1,4),

∴可設(shè)拋物線解析式為y=a(x﹣1)2+4,

∵拋物線經(jīng)過(guò)B(2,3),

3=a+4,解得a=1,

∴拋物線為y=x2﹣2x+5;

(2)設(shè)P(x,x2﹣2x+5),E點(diǎn)坐標(biāo)為(x,1.5x),

PE=3EF,

x2﹣2x+5=4×1.5x,

解得:,(不合題意,舍去)

P點(diǎn)的橫坐標(biāo)為4﹣

(3)當(dāng)MB關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng)時(shí),MN最大,此時(shí)BN重合,

此時(shí)M的坐標(biāo)為(0,3),

當(dāng)MT垂直對(duì)稱(chēng)軸時(shí),△MDT周長(zhǎng)最小,

此時(shí)T的坐標(biāo)為(1,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC,若CE=5,則BC等于(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)O是原點(diǎn),頂點(diǎn)By軸上,兩條對(duì)角線AC、OB的長(zhǎng)分別是64,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.

(1)寫(xiě)出點(diǎn)A的坐標(biāo),并求k的值;

(2)將菱形OABC沿y軸向下平移多少個(gè)單位長(zhǎng)度后點(diǎn)A會(huì)落在該反比例函數(shù)的圖象上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高節(jié)水意識(shí),小申隨機(jī)統(tǒng)計(jì)了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計(jì)圖.(單位:)

(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);

(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;

(3)請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,給小申家提出一條全理的節(jié)約用水建議,并估算采用你的建議后小申家一個(gè)月(30天計(jì)算)的節(jié)約用水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC是邊長(zhǎng)為8的等邊三角形,ADBC于點(diǎn)D,DEAB于點(diǎn)E.

1)求證:AE3EB

2)若點(diǎn)FAD的中點(diǎn),點(diǎn)PBC邊上的動(dòng)點(diǎn),連接PEPF,如圖2所示,求PEPF的最小值及此時(shí)BP的長(zhǎng);

3)在(2)的條件下,連接EF,當(dāng)PEPF取最小值時(shí),PEF的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

(1)求△AHO的周長(zhǎng);

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長(zhǎng)為12(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-4,3).

由勾股定理,得

AO==5,

△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12;

2)將A點(diǎn)坐標(biāo)代入y=k≠0),得

k=-4×3=-12,

反比例函數(shù)的解析式為y=;

當(dāng)y=-2時(shí),-2=,解得x=6,即B6,-2).

A、B點(diǎn)坐標(biāo)代入y=ax+b,得

解得,

一次函數(shù)的解析式為y=-x+1

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.

型】解答
結(jié)束】
25

【題目】如圖,已知點(diǎn)A、C分別在∠GBE的邊BGBE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點(diǎn)D,連接CD

求證:①AB=AD;

②CD平分∠ACE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=﹣x+4y軸、x軸分別交于

E、F,邊長(zhǎng)為2的等邊ABC,邊BCx軸上,將此三角形沿著x軸的正方向平移,在平移過(guò)程中,得到A1B1C1,當(dāng)點(diǎn)B1與原點(diǎn)重合時(shí),解答下列問(wèn)題:

(1)求出點(diǎn)A1的坐標(biāo),并判斷點(diǎn)A1是否在直線l上;

(2)求出邊A1C1所在直線的解析式;

(3)在坐標(biāo)平面內(nèi)找一點(diǎn)P,使得以P、A1、C1、F為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:有一個(gè)長(zhǎng)3米、寬2米、高4米的長(zhǎng)方體紙盒,一只小螞蟻從A點(diǎn)爬到B點(diǎn),那么這只螞蟻爬行的最短路徑為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.

下列判斷:

①當(dāng)x>0時(shí),y1>y2
當(dāng)x0時(shí),x值越大,M值越;

使得M大于2x值不存在;
使得M=1x值是.其中正確的個(gè)數(shù)是( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案