中,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以1.25cm/s的速度沿BC向終點C移動。過點P作PE∥BC交AD于點E,連結(jié)EQ。設(shè)動點運動時間為x秒。

(1)用含x的代數(shù)式表示AE、DE的長度;

(2)當(dāng)點Q在BD(不包括點B、D)上移動時,設(shè)的面積為,求與月份的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)當(dāng)為何值時,為直角三角形。


(3)分兩種情況討論:

①當(dāng)

②當(dāng)

   

  綜上所述,當(dāng)x為2.5秒或3.1秒時,為直角三角形。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


 如下圖所示,已知等腰梯形ABCD,AD∥BC,AD=2,BC=6,AB=DC=,若動直線l垂直于BC,且從經(jīng)過點B的位置向右平移,直至經(jīng)過點C的位置停止,設(shè)掃過的陰影部分的面積為S,BP為x,則S關(guān)于x的函數(shù)關(guān)系式是          。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,正方形AOCB在平面直角坐標(biāo)系中,點O為原點,點B在反比例函數(shù))圖象上, OB=(OC>OA).

1)求點B的坐標(biāo);

(2)若動點E從A開始沿AB向B以每秒2個單位的速度運動,同時動點F 從B開始沿BC向C以每秒1個單位的速度運動,當(dāng)其中一個動點到達(dá)端點時,另一個動點隨之停止運動.當(dāng)運動時間為秒時,在x軸上是否存在點P,使△PEF的周長最。咳舸嬖,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(4,0),動點C在直線上,若以A、B、C三點為頂點的三角形是等腰三角形,則點C的個數(shù)是【    】

  A.1          B.2          C.3         D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,矩形ABCD中,AB=3,BC=4,將矩形ABCD沿對角線AC平移,平移后的矩形為EFGH(A、E、C、G始終在同一條直線上),當(dāng)點E與C重合時停止移動.平移中EF與BC交于點N,GH與BC的延長線交于點M,EH與DC交于點P,F(xiàn)G與DC的延長線交于點Q.設(shè)S表示矩形PCMH的面積,示矩形NFQC的面積

(1)S與嗎?請說明理由.

(2)設(shè)AE=x,寫出S和x之間的函數(shù)關(guān)系式,并求出x取何值時S有最大值,最大值是多少?

(3)如圖2,連結(jié)BE,當(dāng)AE為何值時,等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(8,0),點 B(t,b)在直線y=b上運動,點D、E、F分別為OB、OA、AB的中點,其中b是大于零的常數(shù)。設(shè)直線y=b與y軸交于點C,問:四邊形DEFB能不能是矩形?若能,求出t的值;若不能,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知在直角坐標(biāo)系中,A(0,2),F(-3,0),D為x軸上一動點,過點F作直線AD的垂線FB,交y軸于B,點C(2,)為定點,在點D移動的過程中,如果以A,B,C,D為頂點的四邊形是梯形,則點D的坐標(biāo)為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,平面直角坐標(biāo)系中,點B(0,2),以B為圓心,1為半徑作圓,把⊙B沿著直線y = x方平移,當(dāng)平移的距離為__________時,⊙B與x軸相切。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


從所給出的四個選項中,選出適當(dāng)?shù)囊粋填入問號所在位置,使之呈現(xiàn)相同的特征【    】

A.       B.       C.      D.

查看答案和解析>>

同步練習(xí)冊答案