(2009•廣州)如圖,邊長為1的正方形ABCD被兩條與邊平行的線段EF、GH分割為四個(gè)小矩形,EF與GH交于點(diǎn)P.
(1)若AG=AE,證明:AF=AH;
(2)若∠FAH=45°,證明:AG+AE=FH;
(3)若Rt△GBF的周長為1,求矩形EPHD的面積.

【答案】分析:(1)因?yàn)锳G=AE?BF=DH.AB=AD,∠ABC=∠ADH?△ABF≌△ADH.(SAS)
(2)將△ADH繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,可得△AFH≌△AFM然后可求得結(jié)論.
(3)設(shè)BF=x,GB=y,根據(jù)線段之間的關(guān)系利用勾股定理求出xy的值.
解答:(1)證明:連接AH、AF.
∵ABCD是正方形,
∴AD=AB,∠D=∠B=90°.
∵ADHG與ABFE都是矩形,
∴DH=AG,AE=BF,
又∵AG=AE,
∴DH=BF.
在Rt△ADH與Rt△ABF中,
∵AD=AB,∠D=∠B=90°,DH=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.

(2)證明:將△ADH繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△ABM的位置.
在△AMF與△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵M(jìn)F=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.

(3)解:設(shè)BF=x,GB=y,則FC=1-x,AG=1-y,(0<x<1,0<y<1)
在Rt△GBF中,GF2=BF2+BG2=x2+y2
∵Rt△GBF的周長為1,
∴BF+BG+GF=x+y+=1
=1-(x+y)
即x2+y2=1-2(x+y)+(x+y)2
整理得2xy-2x-2y+1=0
∴xy-x-y=-,
∴矩形EPHD的面積S=PH•EP=FC•AG=(1-x)(1-y)=xy-x-y+1=-
∴矩形EPHD的面積是
點(diǎn)評(píng):本題考查正方形的特殊性質(zhì),勾股定理以及正方形中的特殊三角形的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市張家港二中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•廣州)如圖,二次函數(shù)y=x2+px+q(p<0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-1),△ABC的面積為
(1)求該二次函數(shù)的關(guān)系式;
(2)過y軸上的一點(diǎn)M(0,m)作y軸的垂線,若該垂線與△ABC的外接圓有公共點(diǎn),求m的取值范圍;
(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ABCD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•廣州)如圖,二次函數(shù)y=x2+px+q(p<0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-1),△ABC的面積為
(1)求該二次函數(shù)的關(guān)系式;
(2)過y軸上的一點(diǎn)M(0,m)作y軸的垂線,若該垂線與△ABC的外接圓有公共點(diǎn),求m的取值范圍;
(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ABCD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省廣州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•廣州)如圖,二次函數(shù)y=x2+px+q(p<0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-1),△ABC的面積為
(1)求該二次函數(shù)的關(guān)系式;
(2)過y軸上的一點(diǎn)M(0,m)作y軸的垂線,若該垂線與△ABC的外接圓有公共點(diǎn),求m的取值范圍;
(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ABCD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例8.2 與圓有關(guān)的角(解析版) 題型:解答題

(2009•廣州)如圖,在⊙O中,∠ACB=∠BDC=60°,AC=2cm.
(1)求∠BAC的度數(shù);(2)求⊙O的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案