【題目】如圖,某校園內(nèi)有一塊菱形的空地ABCD,為了美化環(huán)境,現(xiàn)要進(jìn)行綠化,計(jì)劃在中間建設(shè)一個(gè)面積為S的矩形綠地EFGH,其中,點(diǎn)E、F、G、H分別在菱形的四條邊上,AB=a米,BE=BF=DG=DH=x米,∠A=60°
(1)求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)若a=100,求S的最大值,并求出此時(shí)x的值.

【答案】
(1)解:∵四邊形ABCD是菱形,

∴AB=AD=a米,

∵BE=BF=DH=DG=x米,∠A=60°,

∴AE=AH=(a﹣x)米,∠ADC=120°,

∴△AHE是等邊三角形,即HE=(a﹣x)米,

如圖,過(guò)點(diǎn)P作DP⊥HG于點(diǎn)P,

∴HG=2HP,∠HDP= ∠ADC=60°,

則HG=2HP=2DHsin∠HDP=2x× = x(米),

∴S= x(a﹣x)=﹣ x2+ ax (0<x<a)


(2)解:當(dāng)a=100時(shí),S=﹣ x2+100 x=﹣ (x﹣50)2+2500 ,

∴當(dāng)x=50時(shí),S取得最大值,最大值為2500 m2


【解析】(1)根據(jù)菱形的性質(zhì)得△AHE是等邊三角形,即HE=(a﹣x)米,過(guò)點(diǎn)P作DP⊥HG于點(diǎn)P,則HG=2HP=2DHsin∠HDP= x米,由矩形面積公式可得;(2)將a=100代入上式,配方成頂點(diǎn)式可得其最值情況.
【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD與AB,CD交于A,D兩點(diǎn),EC,BF與AB,CD交于E,C,B,F(xiàn),且1=2,B=C,

(1)說(shuō)明CEBF.

(2)你能得出B=3和A=D這兩個(gè)結(jié)論嗎?若能,寫出你得出結(jié)論的過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=12,點(diǎn)E是BC的中點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)F處,連接FC,則tan∠ECF=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,C=90°,AB=5cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.問(wèn)t為何值時(shí),BCP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為A0,a),Bb,a),且a,b滿足(a32+|b6|0,現(xiàn)同時(shí)將點(diǎn)AB分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)CD,連接ACBD,AB

1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;

2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使SMCDS四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說(shuō)明理由;

3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c過(guò)點(diǎn)B(3,0),C(0,3),D為拋物線的頂點(diǎn).

(1)求拋物線的解析式以及頂點(diǎn)坐標(biāo);
(2)如果點(diǎn)C關(guān)于拋物線y=﹣x2+bx+c對(duì)稱軸的對(duì)稱點(diǎn)為E點(diǎn),連接BC,BE,求tan∠CBE的值;
(3)點(diǎn)M是拋物線對(duì)稱軸上一點(diǎn),且△DAM和△BCE相似,求點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小蕓在自家樓房的窗戶A處,測(cè)量樓前的一棵樹CD的高.現(xiàn)測(cè)得樹頂C處的俯角為45°,樹底D處的俯角為60°,樓底到大樹的距離BD為20米.請(qǐng)你幫助小蕓計(jì)算樹的高度(精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD,AC平分∠BAD,CEABE,AEAD+AB.請(qǐng)你猜想∠1和∠2有什么數(shù)量關(guān)系?并證明你的猜想

猜想   

證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2菱形ABCD中,∠DAB60°,連接對(duì)角線AC,以AC為邊作第二個(gè)菱形ACC1D1,使∠D1AC60°;連接AC1,再以AC1為邊作第三個(gè)菱形AC1C2D2,使∠D2AC160°;,按此規(guī)律所作的第6個(gè)菱形的邊長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案