【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測(cè)量大樹(shù)CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測(cè)得直立于地面的大樹(shù)頂端C的仰角為45°,然后沿在同一剖面的斜坡AB行走13米至坡頂B,然后再沿水平方向行走4米至大樹(shù)腳底點(diǎn)D斜面AB的坡度(或坡比i=1:2.4,那么大樹(shù)CD的高度為_____

【答案】11

【解析】

可以作BFAEF,在RtABF中,運(yùn)用勾股定理,根據(jù)各邊的數(shù)量關(guān)系求得AF的長(zhǎng)度,就可得到AE的長(zhǎng)度;

接下來(lái)根據(jù)已知的AE的長(zhǎng)度,在RtACE中,運(yùn)用三角函數(shù)求得CE的長(zhǎng)度,進(jìn)而可知CD的長(zhǎng)度.

解:作BFAEF,如圖所示:

FE=BD=4米,DE=BF.

∵斜面AB的坡度i=1:2.4,

AF=2.4BF.

設(shè)BF=x米,則AF=2.4x米,

RtABF中,由勾股定理得:x2+(2.4x)2=132

解得:x=5,

DE=BF=5米,AF=12米,

AE=AF+FE=16.

RtACE中,CE=AE=16米,

CD=CE-DE=16-5=11.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作ABC關(guān)于點(diǎn)C成中心對(duì)稱(chēng)的A1B1C1

2)將A1B1C1向右平移4個(gè)單位,作出平移后的A2B2C2

3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫(xiě)出點(diǎn)P的坐標(biāo)(不寫(xiě)解答過(guò)程,直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過(guò)點(diǎn)(0,1),將拋物線(xiàn)C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線(xiàn)C2,直線(xiàn)y=x+c,經(jīng)過(guò)點(diǎn)Dy軸于點(diǎn)A,交拋物線(xiàn)C2于點(diǎn)B,拋物線(xiàn)C2的頂點(diǎn)為P.

(1)求拋物線(xiàn)C1的解析式;

(2)如圖2,連結(jié)AP,過(guò)點(diǎn)BBC⊥APAP的延長(zhǎng)線(xiàn)于C,設(shè)點(diǎn)Q為拋物線(xiàn)上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連結(jié)BQ并延長(zhǎng)交AC于點(diǎn)F,

當(dāng)點(diǎn)Q運(yùn)動(dòng)到什么位置時(shí),SPBD×SBCF=8?

連接PQ并延長(zhǎng)交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,的對(duì)應(yīng)值如下表:

x

-2

-1

0

1

2

y

0

-4

-4

0

8

1)根據(jù)上表填空:

①拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo)是__________________

②拋物線(xiàn)經(jīng)過(guò)點(diǎn)(-3,_________);

2)試確定拋物線(xiàn)y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰Rt△ABCACBC=2,點(diǎn)P在以斜邊AB為直徑的半圓上MPC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)是(  )

A. π B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)yx的圖像如圖所示,它與二次函數(shù)yax2+2axc的圖像交于AB兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與這個(gè)二次函數(shù)圖像的對(duì)稱(chēng)軸交于點(diǎn)C

(1)求點(diǎn)C的坐標(biāo);

(2)設(shè)二次函數(shù)圖像的頂點(diǎn)為D若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng)ACD的面積等于,求此二次函數(shù)的關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店需要購(gòu)進(jìn)甲、乙兩種商品共160件,其進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)-進(jìn)價(jià))

(1)若商店計(jì)劃銷(xiāo)售完這批商品后能獲利1 100元,請(qǐng)問(wèn)甲、乙兩種商品應(yīng)分別購(gòu)進(jìn)多少件?

(2)若商店計(jì)劃投入資金少于4300元,且銷(xiāo)售完這批商品后獲利多于1260元,請(qǐng)問(wèn)有哪幾種購(gòu)貨方案?并指出獲利最大的購(gòu)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓的半徑OC=2,線(xiàn)段BC與CD是半圓的兩條弦,BC=CD,延長(zhǎng)CD交直徑BA的延長(zhǎng)線(xiàn)于點(diǎn)E,若AE=2,則弦BD的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)EBC邊的中點(diǎn),DEAC相交于點(diǎn)F,連接BF,下列結(jié)論:①SABF=SADFSCDF=4SCEF;SADF=2SCEF;SADF=2SCDF,其中正確的是( 。

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

同步練習(xí)冊(cè)答案