如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)C′處;作∠BPC′的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.
【答案】分析:連接DE,根據(jù)折疊的性質(zhì)可得∠CPD=∠C′PD,再根據(jù)角平分線的定義可得∠BPE=∠C′PE,然后證明∠DPE=90°,從而得到△DPE是直角三角形,再分別表示出AE、CP的長(zhǎng)度,然后利用勾股定理進(jìn)行列式整理即可得到y(tǒng)與x的函數(shù)關(guān)系式,根據(jù)函數(shù)所對(duì)應(yīng)的圖象即可得解.
解答:解:如圖,連接DE,∵△PC′D是△PCD沿PD折疊得到,
∴∠CPD=∠C′PD,
∵PE平分∠BPC′,
∴∠BPE=∠C′PE,
∴∠EPC′+∠DPC′=×180°=90°,
∴△DPE是直角三角形,
∵BP=x,BE=y,AB=3,BC=5,
∴AE=AB-BE=3-y,CP=BC-BP=5-x,
在Rt△BEP中,PE2=BP2+BE2=x2+y2,
在Rt△ADE中,DE2=AE2+AD2=(3-y)2+52
在Rt△PCD中,PD2=PC2+CD2=(5-x)2+32,
在Rt△PDE中,DE2=PE2+PD2,
則(3-y)2+52=x2+y2+(5-x)2+32,
整理得,-6y=2x2-10x,
所以y=-x2+x(0<x<5),
縱觀各選項(xiàng),只有D選項(xiàng)符合.
故選D.
點(diǎn)評(píng):本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,勾股定理的應(yīng)用,作出輔助線并證明得到直角三角形,然后在多個(gè)直角三角形應(yīng)用勾股定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對(duì)角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長(zhǎng)為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案