【題目】如圖,在正方形ABCD中,E為邊AD上的點(diǎn),點(diǎn)F在邊CD上,且CF3FD,∠BEF90°

1)求證:△ABE∽△DEF;

2)若AB4,延長EFBC的延長線于點(diǎn)G,求BG的長

【答案】1)詳見解析;(210

【解析】

1)由正方形的性質(zhì)得出∠A=∠D90°,ABBCCDAD,ADBC,證出∠ABE=∠DEF,即可得出△ABE∽△DEF

2)求出DF1,CF3,由相似三角形的性質(zhì)得出,解得DE2,證明△EDF∽△GCF,得出 ,求出CG6,即可得出答案.

1)證明:∵四邊形ABCD為正方形,

∴∠A=∠D90°,ABBCCDAD,ADBC,

∵∠BEF90°,

∵∠AEB+EBA=∠DEF+EBA90°,

∴∠ABE=∠DEF,

∴△ABE∽△DEF;

2)解:∵ABBCCDAD4,CF3FD,

DF1,CF3

∵△ABE∽△DEF,

,即 ,

解得:DE2,

ADBC,

∴△EDF∽△GCF

,即,

CG6,

BGBC+CG4+610

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,過原點(diǎn)的拋物線與軸交于另一點(diǎn),拋物線頂點(diǎn)的坐標(biāo)為,其對稱軸交軸于點(diǎn).

1)求拋物線的解析式;

2)如圖2,點(diǎn)為拋物線上位于第一象限內(nèi)且在對稱軸右側(cè)的一個(gè)動(dòng)點(diǎn),求使面積最大時(shí)點(diǎn)的坐標(biāo);

3)在對稱軸上是否存在點(diǎn),使得點(diǎn)關(guān)于直線的對稱點(diǎn)滿足以點(diǎn)、為頂點(diǎn)的四邊形為菱形.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合與實(shí)踐﹣﹣探究圖形中角之間的等量關(guān)系及相關(guān)問題.

問題情境:

正方形ABCD中,點(diǎn)P是射線DB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)CCEAP于點(diǎn)E,點(diǎn)Q與點(diǎn)P關(guān)于點(diǎn)E對稱,連接CQ,設(shè)∠DAPα(0°<α135°),∠QCEβ

初步探究:

(1)如圖1,為探究αβ的關(guān)系,勤思小組的同學(xué)畫出了0°<α45°時(shí)的情形,射線AP與邊CD交于點(diǎn)F.他們得出此時(shí)αβ的關(guān)系是β.借助這一結(jié)論可得當(dāng)點(diǎn)Q恰好落在線段BC的延長線上(如圖2)時(shí),α   °,β   °;

深入探究:

(2)敏學(xué)小組的同學(xué)畫出45°<α90°時(shí)的圖形如圖3,射線AP與邊BC交于點(diǎn)G.請猜想此時(shí)αβ之間的等量關(guān)系,并證明結(jié)論;

拓展延伸:

(3)請你借助圖4進(jìn)一步探究:當(dāng)90°<α135°時(shí),αβ之間的等量關(guān)系為   ;

已知正方形邊長為2,在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)αβ時(shí),PQ的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了樹立文明鄉(xiāng)風(fēng),推進(jìn)社會(huì)主義新農(nóng)村建設(shè),某村決定組建村民文體團(tuán)隊(duì),現(xiàn)圍繞“你最喜歡的文體活動(dòng)項(xiàng)目(每人僅限一項(xiàng))”,在全村范圍內(nèi)隨機(jī)抽取部村民進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)求扇形統(tǒng)計(jì)圖中“劃龍舟”所在扇形的圓心角的度數(shù);

(3)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個(gè)項(xiàng)目中任選兩項(xiàng)組隊(duì)參加端午節(jié)慶典活動(dòng),請用列表法或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個(gè)項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線ABxy軸分別相交于點(diǎn)B、A,點(diǎn)Cx軸上一點(diǎn),以AB、BC為邊作平行四邊形ABCD,連接BD,BDBC,將△AOB沿x軸從左向右以每秒一個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)O和點(diǎn)C重合時(shí)運(yùn)動(dòng)停止,設(shè)△AOB與△BCD重合部分的面積為S,運(yùn)動(dòng)時(shí)間為t秒,St之間的函數(shù)如圖(2)所示(其中0t≤2,2tm,mtn時(shí)函數(shù)解析式不同).

1)點(diǎn)B的坐標(biāo)為   ,點(diǎn)D的坐標(biāo)為   ;

2)求St的函數(shù)解析式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)圖象與x軸交于AB兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x1,點(diǎn)B坐標(biāo)為(﹣10).則下面的四個(gè)結(jié)論:①2a+b0;②4a2b+c0;③b24ac0;④當(dāng)y0時(shí),x<﹣1x2.其中正確的有( 。

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)在實(shí)施居民用水管理前,隨機(jī)調(diào)查了部分家庭(單位:戶)去年的月均用水量(單位:t),并將調(diào)查數(shù)據(jù)進(jìn)行整理,繪制出如下不完整的統(tǒng)計(jì)圖表:

月均用水量

頻數(shù)

頻率

0x5

6

 12%

5x10

12

 24%

10x15

   

 32%

15x20

10

 20%

20x25

4

   

25x30

2

 4%

合計(jì)

   

100%

請解答以下問題:

I)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

(Ⅱ)若該小區(qū)有2000戶家庭,根據(jù)此次隨機(jī)抽查的數(shù)據(jù)估計(jì),該小區(qū)月均用水量不低于20t的家庭有多少戶?

(Ⅲ)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)月均用水量的標(biāo)準(zhǔn),超出該標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使68%的家庭水費(fèi)支出不受影響,那么,你覺得家庭月均用水量應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC=5, AB=6, 點(diǎn)DAC上一點(diǎn),作DE//ABBC于點(diǎn)E,點(diǎn)C關(guān)于DE的對稱點(diǎn)為點(diǎn)O,以OA為半徑作⊙O恰好經(jīng)過點(diǎn)C,并交直線DE于點(diǎn)M,N.MN的值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為

(1)求此拋物線的表達(dá)式;

(2)過點(diǎn)軸,垂足為點(diǎn),于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請說明理由;

(3)過點(diǎn),垂足為點(diǎn).請用含的代數(shù)式表示線段的長,并求出當(dāng)為何值時(shí)有最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案