【題目】如圖是二次函數(shù)yax2bxc圖象的一部分,圖象過點A(3,0),對稱軸為直線x=-1,給出四個結(jié)論:①c0;② 2ab0;③0;④若點為函數(shù)圖象上的兩點,則y1y2,其中,正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)拋物線y軸交點情況可判斷;根據(jù)拋物線對稱軸可判斷;根據(jù)拋物線與x軸交點個數(shù)以及不等式的性質(zhì)可判斷;根據(jù)點離對稱軸的遠近可判斷.

解:由拋物線交y軸的正半軸,∴c0,故正確;
對稱軸為直線x=-1,
距離對稱軸較近,
拋物線開口向下,
∴y1y2,故錯誤;
對稱軸為直線x=-1,
,即2a-b=0,故正確;
由函數(shù)圖象可知拋物線與x軸有2個交點,
∴b2-4ac04ac-b20,
∵a0
,故錯誤;
綜上,正確的結(jié)論是:①②2個,
故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在任意四邊形ABCD,ACBD是對角線,E、FG、H分別是線段BD、BCAC、AD上的點,對于四邊形EFGH的形狀某班的學生在一次數(shù)學活動課中,通過動手實踐探索出如下結(jié)論,其中錯誤的是( )

A. EF,G,H是各條線段的中點時,四邊形EFGH為平行四邊形

B. E,F,G,H是各條線段的中點,ACBD,四邊形EFGH為矩形

C. E,FG,H是各條線段的中點AB=CD,四邊形EFGH為菱形

D. E,F,GH不是各條線段的中點時,四邊形EFGH可以為平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點M和圖形W1W2給出如下定義:點P為圖形W1上一點,點Q為圖形W2上一點,當點M是線段PQ的中點時,稱點M是圖形W1,W2中立點.如果點Px1y1),Qx2,y2),那么中立點”M的坐標為(,).

已知,點A-3,0),B0,4),C4,0).

1)連接BC,在點D,0),E0,1),F0)中,可以成為點A和線段BC中立點的是______;

2)已知點G3,0),G的半徑為2,如果直線y=-x+1存在點K可以成為點AG中立點,求點K的坐標;

3)以點C為圓心,半徑為2作圓,點N為直線y=2x+4上的一點,如果存在點N,使得y軸上的一點可以成為點NC中立點,直接寫出點N的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)的圖象與x軸的兩個交點和頂點構(gòu)成等邊三角形,則稱這樣的二次函數(shù)的圖象為標準拋物線.如圖,自左至右的一組二次函數(shù)的圖象T1,T2T3……是標準拋物線,且頂點都在直線y=x上,T1x軸交于點A1(20),A2(A2A1右側(cè))T2x軸交于點A2,A3,T3x軸交于點A3,A4,……,則拋物線Tn的函數(shù)表達式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線的函數(shù)表達式為,點的坐標為,以為圓心,為半徑畫圓,交直線于點,交軸正半軸于點,以為圓心,為半徑畫圓,交直線于點,交軸正半軸于點,以為圓心,為半徑畫圓,交直線于點,交軸正半軸于點;…按此做法進行下去,其中的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC,AE 是∠BAC 的平分線,∠ABC 的平分線 BM 交 AE 于點 M,點 O在 AB 上,以點O 為圓心,OB 的長為半徑的圓經(jīng)過點 M,交 BC 于點G,交 AB 于點 F.

(1)求證:AE 為⊙O 的切線.

(2)當 BC=8,AC=12 時,求⊙O 的半徑.

(3)在(2)的條件下,求線段 BG 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩個函數(shù),若對于每個使函數(shù)有意義的實數(shù),函數(shù)的值為兩個函數(shù)值中的較小的數(shù),則稱函數(shù)為這兩個函數(shù)的較小值函數(shù).例如:,則的較小值函數(shù)為

1)函數(shù)是函數(shù)的較小值函數(shù).

①在如圖的平面直角坐標系中兩出函數(shù)的圖象.

②求函數(shù)的圖象與軸的交點坐標.

2)函數(shù)是函數(shù)的較小值函數(shù).

①寫出函數(shù)的兩條性質(zhì).

②當時,函數(shù)值的取值范圍為.當取某個范圍內(nèi)的任意值時,為定值,直接寫出滿足條件的的取值范圍及其對應的的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐﹣四邊形旋轉(zhuǎn)中的數(shù)學

智慧數(shù)學小組在課外數(shù)學活動中研究了一個問題,請幫他們解答.

任務一:如圖1,在矩形ABCD中,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點,四邊形AEGF為矩形,連接CG.

(1)請直接寫出CG的長是______

(2)如圖2,當矩形AEGF繞點A旋轉(zhuǎn)(比如順時針旋轉(zhuǎn))至點G落在邊AB上時,請計算DFCG的長,通過計算,試猜想DFCG之間的數(shù)量關系.

(3)當矩形AEGF繞點A旋轉(zhuǎn)至如圖3的位置時,(2)中DFCG之間的數(shù)量關系是否還成立?請說明理由.

任務二:智慧數(shù)學小組對圖形的旋轉(zhuǎn)進行了拓展研究,如圖4,在ABCD中,∠B=60°,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點,四邊形AEGF為平行四邊形,連接CG.“智慧數(shù)學小組發(fā)現(xiàn)DFCG仍然存在著特定的數(shù)量關系.

(4)如圖5,當AEGF繞點A旋轉(zhuǎn)(比如順時針旋轉(zhuǎn)),其他條件不變時,智慧數(shù)學小組發(fā)現(xiàn)DFCG仍然存在著這一特定的數(shù)量關系.請你直接寫出這個特定的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①拋物線y=﹣x2+m1x+m與直線ykx+k交于點A、B,其中A點在x軸上,它們與y軸交點分別為CD,P為拋物線的頂點,且點P縱坐標為4,拋物線的對稱軸交直線于點Q

1)試用含k的代數(shù)式表示點Q、點B的坐標.

2)連接PC,若四邊形CDQP的內(nèi)部(包括邊界和頂點)只有4個橫坐標、縱坐標均為整數(shù)的點,求k的取值范圍.

3)如圖②,四邊形CDQP為平行四邊形時,

①求k的值;

EF為線段DB上的點(含端點),橫坐標分別為a,a+nn為正整數(shù)),EGy軸交拋物線于點G.問是否存在正整數(shù)n,使?jié)M足tanEGF的點E有兩個?若存在,求出n;若不存在說明理由.

查看答案和解析>>

同步練習冊答案