【題目】已知函數(shù),下列說法正確的是( )

A. 方程=-3必有實數(shù)根

B. 若移動函數(shù)圖象使其經(jīng)過原點,則只能將圖像向右移動1個單位

C. k>0,則當x>0時,必有y隨著x的增大而增大

D. k<0,則當x<-1時,必有y隨著x的增大而增大

【答案】A

【解析】

試題解析:A、整理方程k(x+1)(x-)=-3kx2-(3-k)x=0,

b2-4ac=[-(3-k)]2=(k-3)2≥0,

∴方程k(x+1)(x-)=-3必有實數(shù)根,故此選項正確;

B、若移動函數(shù)圖象使其經(jīng)過原點,可向右移動一個單位或向左移動個單位,故此選項錯誤;

C、∵拋物線的對稱軸為x=,

∴當k>0≥0,即0<k≤3時,必有y隨著x的增大而增大,故此選項錯誤;

D、由拋物線的對稱軸為x=知,當k<0≥-1,即k≤-3時,必有y隨著x的增大而增大,故此選項錯誤;

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某手機店銷售型和型手機的利潤為元,銷售型和型手機的利潤為.

(1)求每部型手機和型手機的銷售利潤;

(2)該手機店計劃一次購進兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為.

①求關于的函數(shù)關系式;

②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?

(3)(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調(diào)元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用總長10m的鋁合金材料做一個如圖所示的窗框(不計損耗),窗框的上部是等腰直角三角形,下部是兩個全等的矩形,窗框的總面積為3m2(材料的厚度忽略不計).若設等腰直角三角形的斜邊長為xm,下列方程符合題意的是( 。

A. B.

C. =3D. =3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點A(-1,0)、B(3,0)C(0,3)三點.

(1)求拋物線相應的函數(shù)表達式;

(2)M是線段BC上的點(不與BC重合),過MMNy軸交拋物線于N,連接NB.若點M的橫坐標為t,是否存在t,使MN的長最大?若存在,求出sinMBN的值;若不存在,請說明理由;

(3)若對一切x≥0均有ax2+bx+c≤mx-m+13成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上依次有A、B、C三地,自行車愛好者甲、乙兩人分別從AB兩地同時出發(fā),沿直線勻速騎向C地.已知甲的速度為20km/h,如圖所示,甲、乙兩人與A地的距離y(km)與行駛時間x(h)的函數(shù)圖象分別為線段OD、EF

(1)AB兩地的距離為______km

(2)求線段EF所在直線對應的函數(shù)關系式.

(3)若兩人在出發(fā)時都配備了通話距離為3km的對講機,求甲、乙兩人均在騎行過程中可以用對講機通話的時間段.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(x-2)(x-3)=m有實數(shù)根x1,x2,且x1x2.

(1)求m的取值范圍;

(2)如果這個方程的兩個實根分別為x1=α,x2,且αβ,當m>0時,試比較α,β,2,3的大小,并用“<”連接;

(3)求二次函數(shù)y=(xx1)(xx2)+m的圖像與x軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 經(jīng)過 、 兩點.

1)求拋物線的解析式;

2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;

3)如圖,已知點N在拋物線上,且 .

①求出點N的坐標;

②在(2)的條件下,直接寫出所有滿足 的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yx軸交于A,CAC的左側),點B在拋物線上,其橫坐標為1,連接BC,BO,點FOB中點.

1)求直線BC的函數(shù)表達式;

2)若點D為拋物線第四象限上的一個動點,連接BD,CD,點Ex軸上一動點,當BCD的面積的最大時,求點D的坐標,及|FEDE|的最大值;

3)如圖2,若點G與點B關于拋物線對稱軸對稱,直線BGy軸交于點M,點N是線段BG上的一動點,連接NF,MF,當∠NFO3BNF時,連接CN,將直線BO繞點O旋轉,記旋轉中的直線BOBO,直線BO與直線CN交于點Q,當OCQ為等腰三角形時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個直角三角形紙片OAB,其中AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D

1)若折疊后使點B與點A重合,求點C的坐標;

2)若折疊后點B落在邊OA上的點為B,設OB′=xOC=y,試寫出y關于x的函數(shù)解析式,并確定y的取值范圍;

3)若折疊后點B落在邊OA上的點為B,且使BD//OB,求此時點C的坐標.

查看答案和解析>>

同步練習冊答案