如圖,在平行四邊形ABCD中,AE:EB=2:3.
(1)求△AEF和△CDF的周長(zhǎng)比;
(2)若S△AEF=8cm2,求S△CDF

【答案】分析:(1)根據(jù)平行四邊形的對(duì)邊平行且相等可得AB∥DC,AB=DC,然后求出△AEF和△CDF相似,根據(jù)相似三角形周長(zhǎng)的比等于相似比可得周長(zhǎng)之比等于AE:CD,再根據(jù)AE:EB=2:3求出AE:CD,從而得解;
(2)根據(jù)相似三角形面積的比等于相似比的平方列式計(jì)算即可得解.
解答:解:(1)∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=DC,
∴△AEF∽△CDF,
∴C△AEF:C△CDF=AE:CD=AE:AB,
∵AE:EB=2:3,
∴AE:AB=2:5,
∴C△AEF:C△CDF=2:5;

(2)∵△AEF∽△CDF,
∴S△AEF:S△CDF=4:25,
∵S△AEF=8cm2,
∴S△CDF=50cm2
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),平行四邊形的性質(zhì),由平行線判定相似三角形是最常用的方法,還利用了相似三角形周長(zhǎng)的比等于對(duì)應(yīng)邊的比,面積的比等于相似比的平方的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案