如圖,用長為32米的籬笆圍成一個(gè)外形為矩形的花圃,花圃的一邊利用原有墻,中間用2道籬笆割成3個(gè)小矩形.已知原有墻的最大可利用長度為15米,花圃的面積為S平方米,平行于原有墻的一邊BC長為x米.
(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)圍成的花圃面積為60平方米時(shí),求AB的長;
(3)能否圍成面積比60平方米更大的花圃?如果能,那么最大的面積是多少?如果不能,請(qǐng)說明理由.
(1)∵BC=x,則CD=
1
4
(32-x),
∴S=BC×AB=x×
1
4
(32-x)=-
1
4
x2+8x,
答:S與x之間的函數(shù)關(guān)系式是S=-
1
4
x2+8x;

(2)當(dāng)S=60時(shí),60=-
1
4
x2+8x,
整理得:x2-32x+240=0,
解得:x1=12,x2=20,
∵墻的最大可利用長度為15m,
∴BC最長是15m,則x=12,
∴AB=
1
4
(32-12)=5(m),
即花圃的寬AB為5m,
答:如果要圍成面積為60m2的花圃,AB的長是5米.

(3)能,
理由:S=-
1
4
x2+8x=-
1
4
(x-16)2+64,
∵圖象開口向下,當(dāng)x≤16時(shí),S隨x的增大而增大,
∵0≤x≤≤15,
∴當(dāng)x=15m時(shí),S最大=-
1
4
(15-16)2+64=63.75m2>60m2,
∴x=15m時(shí),能圍成面積比60m2更大的花圃,最大面積為63.75m2
答:能圍成面積比60m2更大的花圃,最大面積是63.75m2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=kx+2經(jīng)過點(diǎn)P(1,
5
2
),與x軸相交于點(diǎn)A;拋物線y=ax2+bx(a>0)經(jīng)過點(diǎn)A和點(diǎn)P,頂點(diǎn)為M.
(1)求直線y=kx+2的表達(dá)式;
(2)求拋物線y=ax2+bx的表達(dá)式;
(3)設(shè)此直線與y軸相交于點(diǎn)B,直線BM與x軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(
8
3
,0),試判斷△ACB與△ABD是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2-4x+3與x軸交于兩點(diǎn)A、B(A在B左側(cè)),與y軸交于點(diǎn)C.
(1)對(duì)于任意實(shí)數(shù)m,點(diǎn)M(m,-3)是否在該拋物線上?請(qǐng)說明理由;
(2)求∠ABC的度數(shù);
(3)若點(diǎn)P在拋物線上,且使得△PBC是以BC為直角邊的直角三角形,試求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系XOY中,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(4,-
3
)
,且與x軸的兩個(gè)交點(diǎn)間的距離為6.
(1)求二次函數(shù)解析式;
(2)在x軸上方的拋物線上,是否存在點(diǎn)Q,使得以點(diǎn)Q、A、B為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)求出Q點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:O為坐標(biāo)原點(diǎn),∠AOB=30°,∠ABO=90°且A(2,0).求:過A、B、O三點(diǎn)的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
(1)此橋拱線所在拋物線的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為4,P是邊BC上一點(diǎn),QP⊥AP交DC于Q,問當(dāng)點(diǎn)P在何位置時(shí),△ADQ的面積最小并求出這個(gè)最小面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,記拋物線y=-x2+1的圖象與x正半軸的交點(diǎn)為A,將線段OA分成n等份,設(shè)分點(diǎn)分別為P1,P2,…Pn-1,過每個(gè)分點(diǎn)作x軸的垂線,分別與拋物線交于點(diǎn)Q1,Q2,…,Qn-1,再記直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面積分別為S1,S2,…,這樣就有S1=
n2-1
2n3
,S2=
n2-4
2n3
,…;記W=S1+S2+…+Sn-1,當(dāng)n越來越大時(shí),你猜想W最接近的常數(shù)是( 。
A.
2
3
B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場經(jīng)營某種品牌的童裝,購進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是80元時(shí),銷售量是200件,而銷售單價(jià)每降低1元,就可多售出20件.
(1)寫出銷售量y件與銷售單價(jià)x元之間的函數(shù)關(guān)系式;
(2)寫出銷售該品牌童裝獲得的利潤w元與銷售單價(jià)x元之間的函數(shù)關(guān)系式;
(3)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場要完成不少于240件的銷售任務(wù),則商場銷售該品牌童裝獲得的最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案