【題目】ABC中,ABAC,∠BAC120°,點(diǎn)D、F分別為AB、AC中點(diǎn),EDAB,GFAC,若BC15cm,求EG的長(zhǎng).

【答案】EG5cm

【解析】

連接AE、AG,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得EB=EA,再根據(jù)等腰三角形兩底角相等求出∠B,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠AEG=60°,同理求出∠AGE=60°,從而判斷出,△AEG為等邊三角形,再根據(jù)等邊三角形三邊都相等列式求解即可.

解:如圖,連接AE、AG

DAB中點(diǎn),EDAB,

EBEA,

∴△ABE為等腰三角形,

又∵∠B30°,

∴∠BAE30°

∴∠AEG60°,

同理可證:∠AGE60°

∴△AEG為等邊三角形,

AEEGAG

又∵AEBE,AGGC,

BEEGGC

BE+EG+GCBC15cm),

EG5cm).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)進(jìn)行促銷,購(gòu)物滿額即可獲得1次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)袋中裝有紅色、黃色、白色三種除顏色外都相同的小球,從袋子中摸出1個(gè)球,紅色、黃色、白色分別代表一、二、三等獎(jiǎng)

(1)若小明獲得1次抽獎(jiǎng)機(jī)會(huì),小明中獎(jiǎng)是______事件(填隨機(jī)、必然、不可能)

(2)小明觀察一段時(shí)間后發(fā)現(xiàn),平均每6個(gè)人中會(huì)有1人抽中一等獎(jiǎng)、2人抽中二等獎(jiǎng),若袋中共有18個(gè)球,請(qǐng)你估算袋中白球的數(shù)量;

(3)在(2)的條件下,如果在抽獎(jiǎng)袋中增加3個(gè)黃球,那么抽中一等獎(jiǎng)的概率會(huì)怎樣變化?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn)(點(diǎn)P不與點(diǎn)B、D重合),PEBC于點(diǎn)E,PFCD于點(diǎn)F,連接EF給出下列五個(gè)結(jié)論:APEF;APEF;僅有當(dāng)DAP45°67.5°時(shí),APD是等腰三角形;④∠PFEBAPPDEC.其中有正確有(  )個(gè).

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,過(guò)點(diǎn)CBD的平行線,過(guò)點(diǎn)DAC的平行線,兩線交于點(diǎn)P,則四邊形CODP的形狀是 ;

2)如圖2,若題目中的矩形變?yōu)榱庑,則四邊形CODP的形狀是

3)如圖3,若題目中的矩形變?yōu)檎叫危?qǐng)判斷四邊形CODP的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖,下列結(jié)論:;②;③;④;⑤;⑥為任意實(shí)數(shù)),其中正確的結(jié)論有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國(guó)內(nèi)和國(guó)外兩種銷售方案中選擇一種進(jìn)行銷售.

若只在國(guó)內(nèi)銷售,銷售價(jià)格(元/件)與月銷量(件)的函數(shù)關(guān)系式為,成本為/件,無(wú)論銷售多少,每月還需支出廣告費(fèi)元,設(shè)月利潤(rùn)為(元).

若只在國(guó)外銷售,銷售價(jià)格為/件,受各種不確定因素影響,成本為/為常數(shù),,當(dāng)月銷量為(件)時(shí),每月還需繳納元的附加費(fèi),設(shè)月利潤(rùn)為(元).

當(dāng)時(shí),________/件;

分別求出,之間的函數(shù)關(guān)系式;

如果某月要求將件產(chǎn)品全部銷售完,請(qǐng)你通過(guò)分析幫公司決策,選擇在國(guó)內(nèi)還是在國(guó)外銷售,才能使所獲月利潤(rùn)較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】情境觀察:

如圖1,△ABC中,AB=AC,∠BAC=45°,CDABAEBC,垂足分別為DE,CDAE交于點(diǎn)F

①寫(xiě)出圖1中所有的全等三角形 ;

②線段AF與線段CE的數(shù)量關(guān)系是

問(wèn)題探究:

如圖2,△ABC中,∠BAC=45°,AB=BCAD平分∠BAC,ADCD,垂足為D,ADBC交于點(diǎn)E

求證:AE=2CD

拓展延伸:

如圖3,△ABC中,∠BAC=45°AB=BC,點(diǎn)DAC上,∠EDC= BAC,DECE,垂足為E,DEBC交于點(diǎn)F.求證:DF=2CE

要求:請(qǐng)你寫(xiě)出輔助線的作法,并在圖3中畫(huà)出輔助線,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=kx與拋物線y=交于點(diǎn)A(3,6).

(1)求直線y=kx的解析式和線段OA的長(zhǎng)度;

(2)點(diǎn)P為拋物線第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;

(3)如圖2,若點(diǎn)B為拋物線上對(duì)稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,小紅到郊野公園游玩,在景點(diǎn)P處測(cè)得景點(diǎn)B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達(dá)景點(diǎn)A,此時(shí)測(cè)得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與景點(diǎn)B之間的距離.(結(jié)果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.75

查看答案和解析>>

同步練習(xí)冊(cè)答案