【題目】已知a2b2-8a-10b+41=0,求5ab2+25的值.

【答案】20

【解析】

已知等式左邊配方變形后,利用非負(fù)數(shù)的性質(zhì)求出ab的值,即可確定出所求式子的值.

因?yàn)?/span>a2b2-8a-10b+41=(a-4)2+(b-5)2=0,

所以a-4=0,b-5=0,即a=4,b=5,

所以原式=5×4-52+25=20-25+25=20.

故答案為:20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O在線段AB上,AO=2,OB=1,OC為射線,且∠BOC=60,動(dòng)點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)O出發(fā),沿射線OC做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t 時(shí),則OP ,SABP ;

(2)當(dāng)ABP是直角三角形時(shí),求t的值;

(3)如圖2,當(dāng)APAB時(shí),過點(diǎn)AAQBP,并使得∠QOP=∠B,求證:AQ·BP=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在紀(jì)念中國抗日戰(zhàn)爭勝利70周年之際,某公司決定組織員工觀看抗日戰(zhàn)爭題材的影片,門票有甲乙兩種,甲種票比乙種票每張貴6元;買甲種票10張,乙種票15張共用去660元.

(1)求甲、乙兩種門票每張各多少元?

(2)如果公司準(zhǔn)備購買35張門票且購票費(fèi)用不超過1000元,那么最多可購買多少張甲種票?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)探究:
(1)動(dòng)手操作:
①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過點(diǎn)B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=
②如圖2,若直角三角板ABC不動(dòng),改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過點(diǎn)B、C,那么∠ABD+∠ACD=
(2)猜想證明:
如圖3,∠BDC與∠A、∠B、∠C之間存在著什么關(guān)系,并說明理由;
(3)靈活應(yīng)用:
請你直接利用以上結(jié)論,解決以下列問題:
①如圖4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度數(shù);
(4)②如圖5,∠ABD,∠ACD的10等分線相交于點(diǎn)F1、F2、…、F9
若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點(diǎn),AB∥CD,連接EA,ED.

(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED=
②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖②,射線FE與l1 , l2交于分別交于點(diǎn)E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個(gè)區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個(gè)區(qū)域上的點(diǎn),猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,作ADAB交BC的延長線于點(diǎn)D,作CEAC,且使AEBD,連結(jié)DE.

(1)求證:AD=CE.

(2)若DE=3,CE=4,求tanDAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若3am+2b4與﹣a5bn1的和仍是一個(gè)單項(xiàng)式,則m+n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.
利用網(wǎng)格點(diǎn)畫圖:

(1)畫出△A′B′C′;
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直立在B處的一標(biāo)桿AB=2.5m,立在點(diǎn)F處的觀測者從點(diǎn)E處看到標(biāo)桿頂A與樹頂C在一直線上(點(diǎn)FB、D也在一直線上)。已知BD=10m,FB=2m,人身高EF=1.7m,求樹高DC.

查看答案和解析>>

同步練習(xí)冊答案