(2007•瀘州)如圖,已知AB為⊙O的直徑,直線BC與⊙O相切于點(diǎn)B,過A作AD∥OC交⊙O于點(diǎn)D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AD=2,直徑AB=6,求線段BC的長.

【答案】分析:(1)連接OD,要證明CD為圓O的切線,只要證明∠CDB=90°即可;
(2)連接BD,根據(jù)已知求得△ADB∽△OBC再根據(jù)相似比即可求得BC的值.
解答:(1)證明:連接OD,如圖所示:

∵OA=OD,
∴∠ODA=∠OAD.
∵AD∥CO,
∴∠COD=∠ODA,∠COB=∠OAD.
∴∠COD=∠COB.
∵OD=OB,OC=OC,
∴△ODC≌△OBC.
∴∠ODC=∠OBC.
∵CB是圓O的切線且OB為半徑,
∴∠CBO=90°.
∴∠CDO=90°.
∴OD⊥CD.
又∵CD經(jīng)過半徑OD的外端點(diǎn)D,
∴CD為圓O的切線.

(2)解:連接BD,CO,
∵AB是直徑,
∴∠ADB=90°.
在直角△ADB中,BD=,
∵∠ADB=∠OBC=90°,且∠COB=∠BAD,
∴△ADB∽△OBC.(8分)
,即
∴BC=6
點(diǎn)評:本題利用了等邊對等角,平行線的性質(zhì),全等三角形的判定和性質(zhì),切線的判定和性質(zhì),直徑對的圓周角是直角,勾股定理,相似三角形的判定和性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•瀘州)如圖,已知直線l:y=及拋物線C:y=ax2+bx+c(a≠0),且拋物線C圖象上部分點(diǎn)的對應(yīng)值如下表:
-2-1 2 3
 y-5 0 3 4 3 0-5
(1)求拋物線C對應(yīng)的函數(shù)解析式;
(2)求直線l與拋物線C的交點(diǎn)A、B的坐標(biāo);
(3)若動點(diǎn)M在直線l上方的拋物線C上移動,求△ABM的邊AB上的高h(yuǎn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省瀘州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•瀘州)如圖,已知直線l:y=及拋物線C:y=ax2+bx+c(a≠0),且拋物線C圖象上部分點(diǎn)的對應(yīng)值如下表:
-2-1 2 3
 y-5 0 3 4 3 0-5
(1)求拋物線C對應(yīng)的函數(shù)解析式;
(2)求直線l與拋物線C的交點(diǎn)A、B的坐標(biāo);
(3)若動點(diǎn)M在直線l上方的拋物線C上移動,求△ABM的邊AB上的高h(yuǎn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2007•瀘州)如圖,AC是正方形ABCD的對角線,AE平分∠BAC,EF⊥AC交AC于點(diǎn)F.
(1)圖中與線段BE相等的所有線段是______;
(2)選擇圖中與BE相等的任意一條線段,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(13)(解析版) 題型:解答題

(2007•瀘州)如圖,AC是正方形ABCD的對角線,AE平分∠BAC,EF⊥AC交AC于點(diǎn)F.
(1)圖中與線段BE相等的所有線段是______;
(2)選擇圖中與BE相等的任意一條線段,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省潮州市潮安縣松昌實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)三模試卷(解析版) 題型:選擇題

(2007•瀘州)如圖,直線l與直線a,b相交,且a∥b,∠1=80°,則∠2的度數(shù)是( )

A.60°
B.80°
C.100°
D.120°

查看答案和解析>>

同步練習(xí)冊答案