【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出不等式kx+b﹣<0的解集.

(3)P是x軸上的一點,且滿足△APB的面積是9,寫出P點的坐標。

【答案】(1)反比例函數(shù)的解析式為y=﹣,一次函數(shù)的解析式為y=﹣x﹣2;

(2)不等式解集為﹣4<x<0或x>2;

(3)點P坐標為(-5,0),或(1,0)

【解析】試題分析:對于(1),由A-4n),B24)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點,利用待定系數(shù)法分別求出一次函數(shù)y=kx+b和反比例函數(shù)y= y=;

對于(2),根據(jù)圖象的增減性可直接得到答案.

對于(3)由S△APB=S△ACP+S△BPC可得PC=3,點C的坐標為(﹣2,0),點P 分在C點左側和右側兩種情況求坐標.

試題解析:1B2,4)在y= y=上,

m=﹣8

∴反比例函數(shù)的解析式為y=

∵點A4,n)在y=上,

n=2

A﹣42).

y=kx+b經(jīng)過A﹣4,2),B2,﹣4),

,解得:

∴一次函數(shù)的解析式為y=﹣x﹣2

2)不等式kx+by=0的解集為﹣4x0x2

3SAPB=SACP+SBPC

PC=3

y=0時,x=﹣2∴點C﹣20).

PC點的左側時,P1-5,0),當PC點的右側時,P21,0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設其長度為xcm.

(1)請直接寫出第5節(jié)套管的長度;

(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與坐標軸交于A、B、C三點,其中點A的坐標為(0,8),點B的坐標為(﹣4,0).

(1)求該二次函數(shù)的表達式及點C的坐標;

(2)點D的坐標為(0,4),點F為該二次函數(shù)在第一象限內圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設平行四邊形CDEF的面積為S.

①求S的最大值;

②在點F的運動過程中,當點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【題目】如圖所示的105的數(shù)陣,是由一些連續(xù)奇數(shù)組成的,形如圖框中的四個數(shù),設第一行的第一個數(shù)為

1用含的式子表示另外三個數(shù);

2若這樣框中的四個數(shù)的和是200,求出這四個數(shù);

3是否存在這樣的四個數(shù),它們的和為246?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.
作AD⊥BC于D,設BD=x,用含x的代數(shù)式表示CD→根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型求出x→利用勾股定理求出AD的長,再計算三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的長為4,寬為a(a<4),剪去一個邊長最大的正方形后剩下一個矩形,同樣的方法操作,在剩下的矩形中再剪去一個最大的正方形,若剪去三個正方形后,剩下的恰好是一個正方形,則最后一個正方形的邊長是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正五邊形每個外角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場有A,B兩種商品,若買2件A商品和1件B商品,共需80元;若買3件A商品和2件B商品,共需135元

1設A,B兩種商品每件售價分別為a元、b元,求a、b的值;

2B商品每件的成本是20元,根據(jù)市場調查:若按1中求出的單價銷售,該商場每天銷售B商品100件;若銷售單價每上漲1元,B商品每天的銷售量就減少5件

求每天B商品的銷售利潤y與銷售單價x元之間的函數(shù)關系?

求銷售單價為多少元時,B商品每天的銷售利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案