【題目】如圖,將矩形紙片的兩只直角分別沿EF、DF翻折,點B恰好落在AD邊上的點B′處,點C恰好落在邊B′F上.若AE=3,BE=5,則FC= .
【答案】4
【解析】解:由題意得:B′E=BE=5,BF=B′F,∠BFE═∠EFB′,∠C′FD=∠DFC,
∴∠EFD=90°,
∴∠3+∠2=90°,
連接BB′,
∴EF⊥BB′,
∴∠1+∠3=90°,
∴∠1=∠2,
∵AE=3,四邊形ABCD是矩形,
∴∠A=∠C=90°,AD∥BC,
∴∠AB′B=∠1,AB′= =4,
∴∠AB′B=∠2,
∵CD=AB=8,
在△ABB′與△CDF中,
,
∴△ABB′≌△CDF(AAS),
∴CF=AB′=4.
【考點精析】關于本題考查的勾股定理的概念和矩形的判定方法,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】有個填寫運算符號的游戲:在“ 1□3□9□7” 中的每個□內(nèi),填入,,,中的某一個(可重復使用),然后計算結果.
(1)計算:;
(2)若13×9□7= -4,請推算□內(nèi)的符號;
(3)在“1□3□9-7”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小正方形的邊長為1,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A'B'C',圖中標出了點B的對應點B'.利用網(wǎng)格點和三角板畫圖:
(1)補全△A'B'C'根據(jù)下列條件;
(2)畫出△ABC中AB邊上的中線CD;
(3)畫出△ABC中BC邊上的高線AE;
(4)線段A'B'與AB的關系是 .△A'B'C'的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③(∠α+∠β);④(∠α﹣∠β).正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】你能求(x一1)(x99+x98+x97+…+x+1)的值嗎?
遇到這樣的問題,我們可以先思考一下,從簡單的情形人手,分別計算下列各式的值.
(1)(x-1)(x+1) =_____________;
(2)(x—1)( x2+x+1) =_____________;
(3)(x-1)(x3+ x2+x+1) =____________;
…
由此我們可以得到:
(4)(x一1)( x99+x98+x97+…+x+1) =___________,
請你利用上面的結論,完成下列的計算:
(5)299+298+297+…+2+1;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個平行四邊形,第二幅圖中有3個平行四邊形,第三幅圖中有5個平行四邊形,則第6幅和第7幅圖中合計有( )個平行四邊形
A.22B.24C.26D.28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A,B分別是x軸、y軸上的動點,點C,D是某個函數(shù)圖象上的點,當四邊形ABCD(A,B,C,D各點依次排列)為正方形時,稱這個正方形為此函數(shù)圖象的伴侶正方形.例如:如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.
(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;
(2)若某函數(shù)是反比例函數(shù)y= (k>0),他的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;
(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標 , 寫出符合題意的其中一條拋物線解析式 , 并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B,C,D為矩形的四個頂點,AB=16 cm,BC=6 cm,動點P,Q分別從點A,C同時出發(fā),點P以3 cm/s的速度向點B移動,點Q以2 cm/s的速度向點D移動.當點P運動到點B停止時,點Q也隨之停止運動.問幾秒時點P和點Q的距離是10 cm?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com