【題目】如圖,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外側作直線AP,點C關于直線AP的對稱點為D,連接AD,BD.
(1)依據(jù)題意補全圖形;
(2)當∠PAC等于多少度時,AD∥BC?請說明理由;
(3)若BD交直線AP于點E,連接CE,求∠CED的度數(shù);
(4)探索:線段CE,AE和BE之間的數(shù)量關系,并說明理由.
【答案】(1)詳見解析;(2)30°;(3)120(4)
【解析】
(1)根據(jù)題意畫出圖形即可;
(2)連接CD,交AP于CD于F,因為AD∥BC,所以∠C=∠CAD,由對稱可得AC=AD,CF=FD,AF⊥CD,所以AP平分∠CAD,即可求解.
(3)AD=AC,∠DAP=∠CAP,∠DEP=∠PEC,求出AB=AC=AD,得到∠ABE=∠D,在△ABE中,得∠ABE+∠AEB+∠BAE=180°,得到∠D+∠CAE+60°+∠D+∠CAE =180°,求出∠D+∠CAE=60°,證明∠DEP=60°,即可求解;
(4)CE +AE=BE,如圖,在BE上取點M使ME=AE,連接AM,設∠EAC=∠DAE=x,求得∠AEB=60°,從而得到△AME為等邊三角形,根據(jù)等邊三角形的性質和SAS即可判定△AEC≌△AMB,根據(jù)全等三角形的性質可得CE=BM,由此即可證得CE+AE=BE.
(1)
(2)連接CD,交AP于F,
∵AB=AC,∠BAC=60°
∴等邊三角形ABC
∴∠BCA=60°
∵AD∥BC
∴∠BCA=60°=∠DAC
由對稱可得AC=AD,CF=FD,AF⊥CD
∴AP平分∠CAD
∴∠PAC=30°
(3)由對稱可得AD=AC,∠DAE=∠CAE,∠DEP=∠PEC
∵等邊三角形ABC
∴AB=AC=AD
∴∠ABE=∠D
∵△ABE
∴∠ABE+∠AEB+∠BAE=180°
∴∠ABE+∠AEB+∠BAC+∠CAE=180°
∴∠D+∠CAE+60°+∠D+∠CAE =180°
∴∠D+∠CAE=60°
∴∠DEP=60°
∴∠DEC=120°;
(4)CE+AE=BE.
在BE上取點M使ME=AE,連接AM,
在等邊△ABC中,
AC=AB,∠BAC=60°
由對稱可知:AC=AD,∠EAC=∠EAD,
設∠EAC=∠DAE=x.
∵AD=AC=AB,
∴∠D=60°-x
∴∠AEB=60-x+x=60°.
∴△AME為等邊三角形.
∴AM=AE,∠MAE=60°,
∴∠BAC=∠MAE=60°,
即可得∠BAM=∠CAE.
在△AMB和△AEC中,AB=AC,∠BAM=∠CAE, AM=AE,
∴△AMB≌△AEC.
∴CE=BM.
∴CE+AE=BE.
科目:初中數(shù)學 來源: 題型:
【題目】夏季來臨,商場準備購進甲、乙兩種空調,已知甲種空調每臺進價比乙種空調多500元,用40000元購進甲種空調的數(shù)量與用30000元購進乙種空調的數(shù)量相同.請解答下列問題:
(1)求甲、乙兩種空調每臺的進價;
(2)若甲種空調每臺售價2500元,乙種空調每臺售價1800元,商場計劃用不超過36000元購進空調共20臺,且全部售出,請寫出所獲利潤y(元)與甲種空調x(臺)之間的函數(shù)關系式,并求出所能獲得的最大
利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,相交兩圓的公共弦AB長為120cm,它分別是一圓內(nèi)接正六邊形的邊和另一圓內(nèi)接正方形的邊,求兩圓相交弧間的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果市場的甲、乙兩家商店中都有批發(fā)某種水果,批發(fā)該種水果x千克時,在甲、乙兩家商店所花的錢分別為y1元和y2元,已知y1、y2關于x的函數(shù)圖象分別為如圖所示的折線OAB和射線OC.
(1)當x的取值為 時,在甲乙兩家店所花錢一樣多?
(2)當x的取值為 時,在乙店批發(fā)比較便宜?
(3)如果批發(fā)30千克該水果時,在甲店批發(fā)比在乙店批發(fā)便宜50元,求射線AB的表達式,并寫出定義域.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國東漢初年編訂的一部數(shù)學經(jīng)典著作在它的“方程”一章里,一次方程組是由算籌布置而成的《九章算術》中的算籌圖是豎排的,現(xiàn)在我們把它改為橫排,如圖1、圖2圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)的系數(shù)與相應的常數(shù)項把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是類似地,圖2所示的算籌圖我們可以表述為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的個主題進行了抽樣調查(每位同學只選最關注的一個),根據(jù)調查結果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這個主題中任選兩個進行調查,根據(jù)(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知,點、在直線上,點、在直線上,且于.
(1)求證:;
(2)如圖2,平分交于點,平分交于點,求的度數(shù);
(3)如圖3,為線段上一點,為線段上一點,連接,為的角平分線上一點,且,則、、之間的數(shù)量關系是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結合圖象直接寫出不等式k2x+b﹣>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com