【題目】公路上依次有A,BC三個汽車站.上午8時,小明騎自行車從AB兩站之間離A 8千米處出發(fā),向C站勻速前進,經(jīng)15分鐘到達離A12千米的地方.

(1)設(shè)小明出發(fā)x小時后,離Ay千米,請寫出yx之間的關(guān)系式;

(2)A,B兩站之間的路程為20千米,那么小明在上午9時能否到達B?

(3)A,B兩站之間的路程為20千米,B,C兩站之間的路程為24千米,那么小明從什么時刻到什么時刻在B站與C站之間?

【答案】(1) (1)y8+16x;(2) 上午9時已經(jīng)過了B,理由見解析;(3上午8451015B,C兩站之間

【解析】試題分析:(1)小明出發(fā)x小時行駛了16x千米,由于小明出發(fā)點距離A8千米,所以小明出發(fā)x小時后離A站的距離y=16x+8;(2要判斷小明在上午9時能否到達B站即要求小明到達B站的時間,A、B兩站相距20千米,所以令y=20,求出x即可;(3要求小明從什么時刻到什么時刻在B站與C站之間即要分別求出小明到達B、C站的時間,到達B站的時間已經(jīng)求出,求出小明到達C站的時間即可,A、C兩站相距44千米,所以令y=44,求出x進而求出小明到達C站的時間.

試題解析:

由題意得:小明15分鐘行駛了4千米,則小明的速度為:=16千米/小時,

1y8+16x

2當(dāng)y20時,208+16 x,x == 小時=45分鐘,

∴小明845就到達B站了,因此上午9時已經(jīng)過了B站.

3)當(dāng)y44時,448+16x,x=22小時=2小時15分鐘,

∴小明1015到達C站,

∴小明從上午8451015B、C兩站之間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為(

A.100米 B.99米 C.98米 D.74米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點時,判斷四邊形BECD的形狀,并說明理由;
(3)若D為AB中點,則當(dāng)∠A=時,四邊形BECD是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB是⊙O的直徑,弦AD是∠BAC的平分線,過點D作⊙O的切線L,且ACDE,垂足為點E.

(1)求證:AD2=AB·AE

(2)如果DE=CE=1,請判別四邊形ACDO的形狀,并證明你的結(jié)論成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,如果∠A:B:C=1:1:2,那么它是( 。

A. 鈍角三角形 B. 銳角三角形 C. 直角三角形 D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過點C、AA,求此拋物線的解析式;

(2)點M時第一象限內(nèi)拋物線上的一動點,問:當(dāng)點M在何處時,AMA的面積最大?最大面積是多少?并求出此時M的坐標(biāo);

(3)若P為拋物線上一動點,Nx軸上的一動點,點Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時,求點P的坐標(biāo),當(dāng)這個平行四邊形為矩形時,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P(﹣4,6)關(guān)于原點對稱的點的坐標(biāo)為( 。

A.(﹣6,4B.(﹣4,﹣6C.4,6D.4,﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB=12cm,點CAB上的一個動點,點D、E分別是ACBC的中點.

1)若AC=4cm,求DE的長;

2試?yán)?/span>字母代替數(shù)的方法,說明不論AC取何值(不超過12cm),DE的長不變;

3)知識遷移:如圖②,已知∠AOB=α,過點O畫射線OC,使∠AOB:BOC=3:1OD、OE分別平分∠AOC和∠BOC,試探究∠DOE與∠AOB的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個等腰三角形的兩邊長分別是25,則它的周長為( )

A. 12B. 9C. 129D. 97

查看答案和解析>>

同步練習(xí)冊答案