【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若OB=5,CD=4,求BE的長.
【答案】(1)見解析 (2)6
【解析】分析:(1)連接OD,由BD為角平分線得到一對角相等,根據(jù)OB=OD,等邊對等角得到一對角相等,等量代換得到一對內(nèi)錯角相等,進(jìn)而確定出OD與BC平行,利用兩直線平行同位角相等得到∠ODC為直角,即可得證;
(2)過O作OM垂直于BE,可得出四邊形ODCM為矩形,在直角三角形OBM中,利用勾股定理求出BM的長,由垂徑定理可得BE=2BM.
詳解:(1)連接OD.
∵OD=OB,∴ ∠OBD=∠ODB.
∵BD是∠ABC的角平分線,∴ ∠OBD=∠CBD.
∵ ∠CBD=∠ODB,∴OD∥BC.
∵∠C=90,∴∠ODC=90,∴ OD⊥AC.
∵點(diǎn)D在⊙O上,
∴ AC是⊙O的切線.
(2)過圓心O作OMBC交BC于M.
∵BE為⊙O 的弦,且OMBE,∴BM=EM,
∵∠ODC=∠C=∠OMC= 90° ,
∴四邊形ODCM為矩形,則OM=DC=4.
∵ OB=5,∴BM==3=EM,
∴BE=BM+EM=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)==b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求a,b的值;
②若關(guān)于m的不等式組 恰好有3個整數(shù)解,求實(shí)數(shù)p的取值范圍;
(2)若T(x,y)=T(y,x)對任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過A點(diǎn)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)B.
(1)求一次函數(shù)的解析式;
(2)判斷點(diǎn)C(4,-2)是否在該一次函數(shù)的圖象上,說明理由;
(3)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AE是∠BAC的角平分線,交BC于點(diǎn)E,DE∥AB交AC于點(diǎn)D.
(1)求證AD=ED;
(2)若AC=AB,DE=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,F分別在AB,AC上,CF=CB.連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD.求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用圍棋子按圖的規(guī)律擺圖形,則擺第2014個圖形需要圍棋子的枚數(shù)是( )
A.6041B.6044C.6047D.6050
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的水上樂園有一批人座的自劃船,每艘可供至位游客乘坐游湖,因景區(qū)加大宣傳,預(yù)計(jì)今年游客將會增加.水上樂園的工作人員在去年月日一天出租的艘次人自劃船中隨機(jī)抽取了艘,對其中抽取的每艘船的乘坐人數(shù)進(jìn)行統(tǒng)計(jì),并制成如下統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中, “乘坐1人”所對應(yīng)的圓心角度數(shù);
(2)估計(jì)去年月日這天出租的艘次人自劃船平均每艘船的乘坐人數(shù);
(3)據(jù)旅游局預(yù)報(bào)今年月日這天該景區(qū)可能將增加游客300人,請你為景區(qū)預(yù)計(jì)這天需安排多少艘4人座的自劃船才能滿足需求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),如圖2,點(diǎn)A、B都在原點(diǎn)的右邊∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;如圖3,當(dāng)點(diǎn)A、B都在原點(diǎn)的左邊,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;如圖4,當(dāng)點(diǎn)A、B在原點(diǎn)的兩邊,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣==∣a-b∣.
回答下列問題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是_____,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是______.
(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x,點(diǎn)B表示的數(shù)是-2,則點(diǎn)A和B之間的距離是_____,若∣AB∣=2,那么x為______.
(3)當(dāng)x是_____時(shí),代數(shù)式.
(4)若點(diǎn)A表示的數(shù)是-1,點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動點(diǎn)P、Q同時(shí)從A、B出發(fā)沿?cái)?shù)軸正方向運(yùn)動,點(diǎn)P的速度是每秒3個單位長度,點(diǎn)Q的速度是每秒個單位長度,求運(yùn)動幾秒后,點(diǎn)P與點(diǎn)Q之間的距離為5個單位長度 ?(請寫出必要的求解過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快車的計(jì)費(fèi)規(guī)則如表1,小明幾次乘坐快車的情況如表2,請仔細(xì)觀察分析表格解答以下問題:
(1)填空:a= ,b= ;
(2)列方程求解表1中的x;
(3)小明的爸爸23:10打快車從機(jī)場回家,快車行駛的平均速度是100公里/小時(shí),到家后小明爸爸支付車費(fèi)603元,請問機(jī)場到小明家的路程是多少公里?(用方程解決此問題)
表1:某快車的計(jì)費(fèi)規(guī)則
里程費(fèi)(元/公里) | 時(shí)長費(fèi)(元/分鐘) | 遠(yuǎn)途費(fèi)(元/公里) | |||
5:00﹣23:00 | a | 9:00﹣18:00 | x | 12公里及以下 | 0 |
23:00﹣次日5:00 | 3.2 | 18:00﹣次日9:00 | 0.5 | 超出12公里的部分 | 1.6 |
(說明:總費(fèi)用=里程費(fèi)+時(shí)長費(fèi)+遠(yuǎn)途費(fèi))
表2:小明幾次乘坐快車信息
上車時(shí)間 | 里程(公里) | 時(shí)長(分鐘) | 遠(yuǎn)途費(fèi)(元) | 總費(fèi)用(元) |
7:30 | 5 | 5 | 0 | 13.5 |
10:05 | 20 | 18 | 66.7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com