【題目】根據(jù)道路管理規(guī)定,在廣州某段筆直公路上行駛的車輛,限速40千米/時(shí);已知交警測速點(diǎn)到該公路點(diǎn)的距離為米,(如圖所示),現(xiàn)有一輛汽車由方向勻速行駛,測得此車從點(diǎn)行駛到點(diǎn)所用的時(shí)間為2秒.

1)求測速點(diǎn)到該公路的距離.

2)通過計(jì)算判斷此車是否超速.(參考數(shù)據(jù):,

【答案】110米;(2)超速了.

【解析】

1)過M,在直角三角形AMN中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出MN的長,即可得到結(jié)果.

2)由三角形AMN為等腰直角三角形得到米,在直角三角形BMN中,利用銳角三角函數(shù)定義求出BN的長,由AN+NB求出AB的長,根據(jù)路程除以時(shí)間得到速度,即可做出判斷.

1)過M

RtAMN中,

,即

解得

則測速點(diǎn)到該公路的距離為10米.

2)由(1)知:(米)

RtMNB中,

,得

解得(米)

(米)

∴汽車從AB的平均速度為(米/秒)

11.67/=42.012千米/時(shí)40千米/時(shí)

∴此車超速.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1a),B兩點(diǎn),與x軸交于點(diǎn)C

(1)ak的值及點(diǎn)B的坐標(biāo);

(2)若點(diǎn)Px軸上,且SACPSBOC,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的圓于點(diǎn),過點(diǎn)于點(diǎn),交的延長線于點(diǎn)

1)求證:;

2)求證:是圓的切線;

3)若圓的半徑為3,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線

(1)拋物線的對稱軸為直線________.

(2)當(dāng)時(shí),函數(shù)值的取值范圍是,求的值.

(3)當(dāng)時(shí),解決下列問題.

①拋物線上一點(diǎn)軸的距離為6,求點(diǎn)的坐標(biāo).

②將該拋物線在間的部分記為,將在直線下方的部分沿翻折,其余部分保持不變,得到的新圖象記為,設(shè)的最高點(diǎn)、最低點(diǎn)的縱坐標(biāo)分別為,若,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠有甲種原料69千克,乙種原料52千克,現(xiàn)計(jì)劃用這兩種原料生產(chǎn)A,B兩種型號(hào)的產(chǎn)品共80件,已知每件A型號(hào)產(chǎn)品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號(hào)產(chǎn)品需要甲種原料1.1千克,乙種原料0.4千克.請解答下列問題:

1)該工廠有哪幾種生產(chǎn)方案?

2)在這批產(chǎn)品全部售出的條件下,若1A型號(hào)產(chǎn)品獲利35元,1B型號(hào)產(chǎn)品獲利25元,(1)中哪種方案獲利最大?最大利潤是多少?

3)在(2)的條件下,工廠決定將所有利潤的25%全部用于再次購進(jìn)甲、乙兩種原料,要求每種原料至少購進(jìn)4千克,且購進(jìn)每種原料的數(shù)量均為整數(shù).若甲種原料每千克40元,乙種原料每千克60元,請直接寫出購買甲、乙兩種原料之和最多的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點(diǎn),BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形的拱橋,當(dāng)拱頂離水面3m時(shí),水面寬6m

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式;

(2)如果水面上升1m,則水面寬度減少多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACCB2,以BC為邊向外作正方形BCDE,動(dòng)點(diǎn)MA點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著ACD的路線向D點(diǎn)勻速運(yùn)動(dòng)(M不與A、D重合);過點(diǎn)M作直線lAD,l與路線ABD相交于N,設(shè)運(yùn)動(dòng)時(shí)間為t秒:

1)填空:當(dāng)點(diǎn)MAC上時(shí),BN   (用含t的代數(shù)式表示);

2)當(dāng)點(diǎn)MCD上時(shí)(含點(diǎn)C),是否存在點(diǎn)M,使DEN為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由;

3)過點(diǎn)NNFED,垂足為F,矩形MDFNABD重疊部分的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點(diǎn)E,PDE上的一點(diǎn)(PEPD),PMPD,PMAD邊于點(diǎn)M.

(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PFPN,且點(diǎn)N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當(dāng)點(diǎn)FCD邊的延長線上時(shí),仍然滿足PFPN,此時(shí)點(diǎn)N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案