【題目】如圖,四邊形中,,在、上分別找一點,使周長最小時,則的度數(shù)為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)要使△AMN的周長最小,即利用點的對稱,讓三角形的三邊在同一直線上,作出A關(guān)于BC和CD的對稱點A′,A″,即可得出∠AA′M+∠A″=60°,進而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.
作A關(guān)于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值。,
∵∠DAB=120°,
∴∠AA′M+∠A″=180°120°=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;
(2)(m-n)(m+n)+(m+n)2-2m2,其中m、n滿足方程組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)興趣小組的活動中,小明進行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
⑴小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初級中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計圖.
依據(jù)以上信息解答以下問題:
(1)求樣本容量;
(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);
(3)若該校一共有1800名學(xué)生,估計該校年齡在15歲及以上的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由6個大小相同的小正方形組成的方格中,設(shè)每個小正方形的邊長均為1.
(1)如圖①,,,是三個格點(即小正方形的頂點),判斷與的位置關(guān)系,并說明理由;
(2)如圖②,連接三格和兩格的對角線,求的度數(shù)(要求:畫出示意圖,并寫出證明過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.
(1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點I為△ABC的內(nèi)心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點與I重合,則圖中陰影部分的周長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC看,∠BAC=90°,AC=12,AB=10,D是AC上一個動點,以AD為直徑的⊙O交BD于E,則線段CE的最小值是( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技進步,無人機的應(yīng)用越來越廣,如圖1,在某一時刻,無人機上的探測器顯示,從無人機A處看一棟樓頂部B點的仰角和看與頂部B在同一鉛垂線上高樓的底部C的俯角.
(1)如果上述仰角與俯角分別為30°與60°,且該樓的高度為30米,求該時刻無人機的豎直高度CD;
(2)如圖2,如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時刻無人機的豎直高度CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com