【題目】由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷.某藥店準(zhǔn)備購進一批兩種不同型號口罩進行銷售.下表是甲、乙兩人購買兩種型號口罩的情況:
A型號數(shù)量(單位:個) | B型號數(shù)量(單位:個) | 總售價(單位:元) | |
甲 | 1 | 3 | 26 |
乙 | 3 | 2 | 29 |
(1)求一個型口罩和一個型口罩的售價各是多少元?
(2)藥店準(zhǔn)備購進這兩種型號的口罩共50個,其中型口罩?jǐn)?shù)量不少于35個,且不多于型口罩的3倍,有幾種購買方案?請寫出購買方案.
(3)在(2)的條件下,藥店在銷售完這批口罩后,總售價能否達到282元?
【答案】(1)一個型口罩的售價是5元,一個型口罩的售價是7元;(2)有三種方案,具體方案見解析;(3)總售價不能達到282元.
【解析】
(1)設(shè)一個型口罩的售價是元,一個型口罩的售價是元根據(jù)總售價即可得出關(guān)于a、b的二元一次方程組,解方程組即可得出結(jié)論;
(2) 設(shè)購進型口罩x個,則型口罩()個,根據(jù)“型口罩?jǐn)?shù)量不少于35個,且不多于型口罩的3倍”即可得出關(guān)于x的一元一次不等式,解不等式即可得出x的取值范圍,結(jié)合x為正整數(shù)即可得出購貨方案;
(3)分別計算出三種方案的總售價即可判斷.
(1),依題意有:
解得
答:一個型口罩的售價是5元,一個型口罩的售價是7元.
(2)設(shè)型口罩x個,則型口罩()個,依題意有,
解得,
又因為
∴
為整數(shù),
∴,36,37.
所以有三種方案,分別是:
方案一:購買型口罩35個,購買型口罩15個;
方案二:購買型口罩36個,購買型口罩14個;
方案三:購買型口罩37個,購買型口罩13個.
(3)方案一總售價:元
方案二總售價:元
方案三總售價:元
所以總售價不能達到282元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是坐標(biāo)原點,菱形OABC的頂點A的坐標(biāo)為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(-2,0),C(2,2),過C作CB⊥x軸于B.
(1)如圖1,△ABC的面積是 ;
(2)如圖1,在y軸上找一點P,使得△ABP的面積與△ABC的面積相等,請直接寫出P點坐標(biāo): ;
(3)如圖2,若過B作BD∥AC交y軸于D,則∠BAC+∠ODB的度數(shù)為 度;
(4)如圖3,BD∥AC,若AE、DE分別平分∠CAB,∠ODB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,以點P為圓心的圓弧與x軸交于A、B兩點,已知P(4,2)和A(2,0),則點B的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留一絲空隙,又不互相重疊(在數(shù)學(xué)上叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.
(1)請你根據(jù)圖中的圖形,填寫表中空格:
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | …… | n |
正多邊形每個內(nèi)角度數(shù) | 60° | 90° | 108° | 120° | …… |
(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設(shè)P點的運動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運動到BC中點時,△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點A(1,3)、C(2,1),則點B的坐標(biāo)為______;
(2)△ABC的面積為______;
(3)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P、G不與正方形頂點重合,且在CD的同側(cè)),PD=PG,DF⊥PG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF.
(1)如圖1,當(dāng)點P與點G分別在線段BC與線段AD上時.
①求證:DG=2PC;
②求證:四邊形PEFD是菱形;
(2)如圖2,當(dāng)點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com