【題目】如圖,△ABC的三邊AB、BC、CA長分別為40、50、60.其三條角平分線交于點O,則S△ABO:S△BCO:S△CAO= .
【答案】4:5:6
【解析】首先過點O作OD⊥AB于點D,作OE⊥AC于點E,作OF⊥BC于點F,由OA,OB,OC是△ABC的三條角平分線,根據(jù)角平分線的性質,可得OD=OE=OF,又由△ABC的三邊AB、BC、CA長分別為40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.
過點O作OD⊥AB于點D,作OE⊥AC于點E,作OF⊥BC于點F,
∵OA,OB,OC是△ABC的三條角平分線,
∴OD=OE=OF,
∵△ABC的三邊AB、BC、CA長分別為40、50、60,
∴S△ABO:S△BCO:S△CAO=( ABOD):( BCOF):( ACOE)=AB:BC:AC=40:50:60=4:5:6.
根據(jù)角平分線的性質可知,角平分線上的點到角兩邊的距離相等;求出S△ABO:S△BCO:S△CAO的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點測到B點的仰角α為60°,從C點測得B點的仰角β為30°,甲建筑物的高AB=30米
(1)求甲、乙兩建筑物之間的距離AD.
(2)求乙建筑物的高CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗同學要畫∠AOB的平分線,卻沒有量角器和圓規(guī),于是她用三角尺按下面方法畫角平分線:
①在∠AOB的兩邊上,分別取OM=ON;
②分別過點M、N作OA、OB的垂線,交點為P;
③畫射線OP,則OP為∠AOB的平分線.
(1)請問:小麗的畫法正確嗎?試證明你的結論;
(2)如果你現(xiàn)在只有刻度尺,能否畫一個角的角平分線?請你在備用圖中試一試.(不需要寫作法,但是要讓讀者看懂,你可以在圖中標明數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人由相距60km的兩地同時出發(fā)相向而行,甲步行每小時走5km,乙騎自行車,3h后相遇,則乙的速度為( 。
A. 5 km/hB. 10 km/hC. 15 km/hD. 20 km/h
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(a≠0)的圖象的頂點坐標是(2,1),并且經(jīng)過點(4,2),直線與拋物線交于B,D兩點,以BD為直徑作圓,圓心為點C,圓C與直線m交于對稱軸右側的點M(t,1),直線m上每一點的縱坐標都等于1.
(1)求拋物線的解析式;
(2)證明:圓C與x軸相切;
(3)過點B作BE⊥m,垂足為E,再過點D作DF⊥m,垂足為F,求MF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com