【題目】在探究“尺規(guī)三等分角”這個數(shù)學名題中,利用了如圖,該圖中,四邊形ABCD是矩形,線段AC繞點A逆時針旋轉得到線段AF,CF、BA的延長線交于點E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是( 。

A. B. 21° C. 23° D. 34°

【答案】C

【解析】

由矩形的性質得出∠BCD=90°,AB∥CD,AD∥BC,證出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性質得出∠ACF=2∠FEA,設∠ECD=x,則∠ACF=2x,∠ACD=3x,由互余兩角關系得出方程,解方程即可.

解:∵四邊形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
設∠ECD=x,則∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°;
故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓C過原點并與坐標軸分別交于A、D兩點,已知點B為圓C圓周上一動點,且∠ABO=30°,點D的坐標為(0,2).

(1)直接寫出圓心 C 的坐標;

(2)當△BOD為等邊三角形時,求點B的坐標;

(3)若以點B為圓心、r為半徑作圓B,當圓B與兩個坐標軸同時相切時,求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABE,AMBCM,交CDN,連AD.

(1)求證:AD=AN;

(2)若AE=,ON=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:⊙O的半徑為25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求這兩條平行弦AB,CD之間的距離______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知半徑為2⊙O與直線l相切于點A,點P是直徑AB左側半圓上的動點,過點P作直線l的垂線,垂足為CPC⊙O交于點D,連接PAPB,設PC的長為x(2x4

1】當時,求弦PA、PB的長度;

2】當x為何值時,PD×CD的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的三邊AB、BC、CA長分別為30、4050.其三條角平分線交于點O,則SABO SBCO SCAO =______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,點DE分別在ABAC上,DEBC,BD=CE,

(1)求證:∠B=∠CAD=AE;

(2)若∠BAC=90°,把△ADE繞點A逆時針旋轉到圖2的位置,點M,P,N分別為DE,DC,BC的中點,連接MN,PMPN

①判斷△PMN的形狀,并說明理由;

②把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN的最大面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的內容,再解決問題.

例題:若, 求m和n的值

解:∵

,

,

問題:(1)若,求的值.

(2)已知a,b,c是△ABC的三邊長,滿足,且c是△ABC中最長的邊,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、乙兩人以相同路線前往離學校12千米的地方參加植樹活動.分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時間t(分鐘)變化的函數(shù)圖象,解決下列問題:

(1)求出甲、乙兩人所行駛的路程S、St之間的關系式;

(2)甲行駛10分鐘后,甲、乙兩人相距多少千米?

查看答案和解析>>

同步練習冊答案