如圖,在直角坐標系xoy中,以原點為圓心的⊙O的半徑是
4
5
5
,過A(0,4)作⊙O的切線交x軸于點B,T是切點,拋物線y=ax2+bx+c的頂點為C(3,-
1
2
),且拋物線過A、B兩點.
(1)求此拋物線的解析式;
(2)如果此拋物線的對稱軸交x軸于D點,問在y軸的負半軸上是否存在點P,使△BCD△OPB?若存在,求出P點的坐標;若不存在,請說明理由.
(1)設拋物線的解析式為y=a(x-3)2-
1
2
,
已知拋物線過A點,則有:
a(0-3)2-
1
2
=4,
解得a=
1
2

此拋物線的解析式為:y=
1
2
(x-3)2-
1
2


(2)∵B(2,0);C(3,-
1
2
);D(3,0)
∴BD=1,CD=
1
2
,OB=2
∵要使△BCD△OPB
∴只需
BD
OB
=
CD
OP
BD
OP
=
CD
OB

即:
1
2
=
1
2
OP
1
OP
=
1
2
2

解得:OP=
1
4
或4
∴P(0,-
1
4
)或(0,-4).
故:在y軸的負半軸上是否存在點P(0,-
1
4
)或(0,-4),使△BCD△OPB.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,三角形ABC是以BC為底邊的等腰三角形,點A、C分別是一次函數(shù)y=-
3
4
x+3的圖象與y軸、x軸的交點,點B在二次函數(shù)y=
1
8
x2+bx+c
的圖象上,且該二次函數(shù)圖象上存在一點D使四邊形ABCD能構成平行四邊形.
(1)試求b,c的值,并寫出該二次函數(shù)表達式;
(2)動點P從A到D,同時動點Q從C到A都以每秒1個單位的速度運動,問:
①當P運動到何處時,有PQ⊥AC?
②當P運動到何處時,四邊形PDCQ的面積最。看藭r四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5).
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MNy軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=(1-m)x2+4x-3開口向下,與x軸交于A(x1,0)和B(x2,0)兩點,其中x1<x2
(1)求m的取值范圍;
(2)若x12+x22=10,求拋物線的解析式,并在給出的直角坐標系中畫出這條拋物線;
(3)設這條拋物線的頂點為C,延長CA交y軸于點D.在y軸上是否存在點P,使以P、B、O為頂點的三角形與△BCD相似?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在矩形ABCD中,AB=4,BC=2,以A為坐標原點,AB所在的直線為x軸,建立直角坐標系.然后將矩形ABCD繞點A逆時針旋轉,使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設P為(1)的二次函數(shù)圖象上的一點,BPEG,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中有點A(-1,0),點B(4,0),以AB為直徑的半圓交y軸正半軸于點C.
(1)求點C的坐標;
(2)求過A,B,C三點的拋物線的解析式;
(3)在(2)的條件下,若在拋物線上有一點D,使四邊形BOCD為直角梯形,求直線BD的解析式;
(4)設點M是拋物線上任意一點,過點M作MN⊥y軸,交y軸于點N.若在線段AB上有且只有一點P,使∠MPN為直角,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負半軸交于點B,交y軸的正半軸于點C,過點C的直線交x軸的負半軸于點D(-9,0)
(1)求A,C兩點的坐標;
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過M,A兩點,求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F.如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=
3
:3?若存在,請求出此時點P的坐標;若不存在,請說明理由.(注意:本題中的結果均保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某游樂園要建一個直徑為20m的圓形噴水池,計劃在噴水池的中心安裝一個大的噴水頭,使噴出的水柱中心4m處達到最高,高度為6m,那么這個噴水頭應設計的高度為______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某拋物線型拱橋的示意圖如圖,已知該拋物線的函數(shù)表達式為y=-
1
48
x2+12
,為保護該橋的安全,在該拋物線上的點E、F處要安裝兩盞警示燈(點E、F關于y軸對稱),這兩盞燈的水平距離EF是24米,則警示燈F距水面AB的高度是______米.

查看答案和解析>>

同步練習冊答案