【題目】如圖,在矩形OABC中,OA=6,OC=4,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù) 的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:設a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.
這樣小明就找到了一種把a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a,b,m,n均為正整數(shù)時,若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= ;
(2)利用所探索的結論,找一組正整數(shù)a,b,m,n填空:4+2 =(1+ )2;(答案不唯一)
(3)若a+4=(m+n)2,且a,m,n均為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題提出)
學習了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應相等”的情形進行研究.
(初步思考)
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角”三種情況進行探究.
(深入探究)
第一種情況:當∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC,BC邊上,C,D兩點不重合,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示放置,點A1,A2,A3,…和C1,C2,C3,…分別在直線y=x+1和x軸上,則點B2020的縱坐標是_____,點Bn的縱坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某森林公園從正門到側門有一條公路供游客運動,甲徒步從正門出發(fā)勻速走向側門,出發(fā)一段時間開始休息,休息了0.6小時后仍按原速繼續(xù)行走.乙與甲同時出發(fā),騎自行車從側門勻速前往正門,到達正門后休息0.2小時,然后按原路原速勻速返回側門.圖中折線分別表示甲、乙到側門的路程y(km)與甲出發(fā)時間x(h)之間的函數(shù)關系圖象.根據(jù)圖象信息解答下列問題.
(1)求甲在休息前到側門的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關系式.
(2)求甲、乙第一次相遇的時間.
(3)直接寫出乙回到側門時,甲到側門的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購. 經調查:購買3臺甲型設備比購買2臺乙型設備多花16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.
(1)求甲、乙兩種型號設備的價格;
(2)該公司經預算決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月.若每月要求總產量不低于2040噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的中線BE,CF相交于點G,P、Q分別是BG、CG的中點.
(1)求證:四邊形EFPQ是平行四邊形;
(2)請直接寫出BG與GE的數(shù)量關系.(不要求證明).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com