【題目】如圖,AB為⊙O的直徑,點(diǎn)D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點(diǎn)D,已知點(diǎn)E是半圓弧AB上的動(dòng)點(diǎn),點(diǎn)F是射線DC上的動(dòng)點(diǎn),連接DE、AE,DE與AB交于點(diǎn)P,再連接FP、FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①當(dāng)∠DAE= 時(shí),四邊形ADFP是菱形;
②當(dāng)∠DAE= 時(shí),四邊形BFDP是正方形.
【答案】(1)詳見(jiàn)解析;(2)①67.5°;②90°.
【解析】
(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;
(2)①根據(jù)四邊形ADFP是菱形和菱形的性質(zhì),可以求得∠DAE的度數(shù);
②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).
(1)證明:連接OD,如圖所示,
∵射線DC切⊙O于點(diǎn)D,
∴OD⊥CD,
即∠ODF=90°,
∵∠AED=45°,
∴∠AOD=2∠AED=90°,
∴∠ODF=∠AOD,
∴CD∥AB;
(2)①連接AF與DP交于點(diǎn)G,如圖所示,
∵四邊形ADFP是菱形,∠AED=45°,OA=OD,
∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
∴∠AGE=90°,∠DAO=45°,
∴∠EAG=45°,∠DAG=∠PEG=22.5°,
∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
故答案為:67.5°;
②∵四邊形BFDP是正方形,
∴BF=FD=DP=PB,
∠DPB=∠PBF=∠BFD=∠FDP=90°,
∴此時(shí)點(diǎn)P與點(diǎn)O重合,
∴此時(shí)DE是直徑,
∴∠EAD=90°,
故答案為:90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等臂蹺蹺板AB長(zhǎng)為3米,蹺蹺板AB的支撐點(diǎn)O到地面上的點(diǎn)H的距高OH=0.6米。當(dāng)蹺蹺板AB的一個(gè)端點(diǎn)A碰到地面時(shí),AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.
(1)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?
(2)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),點(diǎn)A到直線BH的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=8,AC=6.點(diǎn)D在邊AB上,AD=4.5.△ABC的角平分線AE交CD于點(diǎn)F.
(1)求證:△ACD∽△ABC;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣3,0),C(0,).將矩形OABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把△ADE沿AE對(duì)折,使點(diǎn)D恰好落在BC邊上的F點(diǎn)處.已知折痕AE=10,且CE:CF=4:3,那么該矩形的周長(zhǎng)為( )
A.48B.64C.92D.96
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,CG⊥AB于點(diǎn)G,∠ABF=45°,F在CD上,BF交CG于點(diǎn)E,連接AE,且AE⊥AD.
(1)若BG=2,BC=,求EF的長(zhǎng)度;
(2)求證:CE+BE=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某新建火車(chē)站站前廣場(chǎng)需要綠化的面積為46000米2,施工隊(duì)在綠化了22000米2后,將每天的工作量增加為原來(lái)的1.5倍,結(jié)果提前4天完成了該項(xiàng)綠化工程.
(1)該項(xiàng)綠化工程原計(jì)劃每天完成多少米2?
(2)該項(xiàng)綠化工程中有一塊長(zhǎng)為20米,寬為8米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問(wèn)人行通道的寬度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,﹣2),B(m,4),與y軸相交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)及△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com