【題目】我市某縣政府為了迎接“八一”建軍節(jié),加強(qiáng)軍民共建活動(dòng),計(jì)劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個(gè),在城區(qū)內(nèi)擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)
(1)某校某年級(jí)一班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問(wèn)符合題意的搭配方案有幾種?請(qǐng)你幫忙設(shè)計(jì)出來(lái).
(2)如果搭配及擺放一個(gè)A造型需要的人力是8人次,搭配及擺放一個(gè)B造型需要的人力是11人次,哪種方案使用人力的總?cè)舜螖?shù)最少,請(qǐng)說(shuō)明理由.
造型 | A | B |
甲種 | 80 | 50 |
乙種 | 40 | 90 |
【答案】
(1)解:設(shè)需要A種造型x個(gè),則B種造型(20﹣x)個(gè)由題意得:
解得: ≤x≤ ,
∴x為整數(shù)x的可能取值為12,13,14;
∴共有3種方案.
分別為A種12個(gè),B種造型8個(gè),A種13個(gè),B種造型7個(gè),A種14個(gè),B種造型6個(gè).
(2)解:第一種方案造型總?cè)舜螢椋?2×8+8×11=184人次.
第二種方案造型總?cè)舜螢椋?3×8+7×11=181人次
第三種方案造型總?cè)舜螢椋?4×8+6×11=178人次
答:第三種方案使用人力的總?cè)舜螖?shù)最少.
【解析】(1)首先根據(jù)題意設(shè)需要A種造型x個(gè),則B種造型(20﹣x)個(gè),再根據(jù)甲乙兩種花卉的盆數(shù)列出不等式組,求出解集后要符合實(shí)際情況注意取整數(shù).(2)根據(jù)(1)中設(shè)計(jì)出的搭配方案分別計(jì)算出使用人力的總?cè)舜螖?shù),比較一下哪個(gè)最少即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用一元一次不等式組的應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫(xiě)出問(wèn)題答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①abc<0,②b<a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正確的是( )
A.②④⑤
B.①②④
C.①③④
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,已知點(diǎn)E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,F(xiàn)是BC上一點(diǎn),且AF=BC,DE⊥AF,垂足是E,連接DF.求證:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)組織學(xué)生進(jìn)行“低碳生活”知識(shí)競(jìng)賽,為了了解本次競(jìng)賽的成績(jī),把學(xué)生成績(jī)分成A、B、C、D、E五個(gè)等級(jí),并繪制如圖的統(tǒng)計(jì)圖(不完整)統(tǒng)計(jì)成績(jī).若扇形的半徑為2cm,則C等級(jí)所在的扇形的面積是cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)對(duì)(a,b),(c,d),定義:當(dāng)且僅當(dāng)a=c且b=d時(shí),(a,b)=(c,d);并定義其運(yùn)算如下:(a,b)※(c,d)=(ac-bd,ad+bc),如(1,2)※(3,4)=(1×3-2×4,1×4+2×3)=(-3,10),若(x,y)※(1,-1)=(1,3),則xy的值是( )
A.-1
B.0
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B兩地相距80km,甲,乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車(chē),甲騎摩托車(chē).圖中DE,OC分別表示甲,乙離開(kāi)A地的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系,根據(jù)圖象得出的下列信息錯(cuò)誤的是( )
A.乙到達(dá)B地時(shí)甲距A地120km.
B.乙出發(fā)1.8小時(shí)被甲追上.
C.甲,乙相距20km時(shí),t為2.4h.
D.甲的速度是乙的速度的 倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=x,ON=x+4,點(diǎn)P是邊OB上的點(diǎn).若使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線(xiàn)的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com