【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是
A. BC=AC B. CF⊥BF C. BD=DF D. AC=BF
【答案】D
【解析】
試題∵EF垂直平分BC,∴BE=EC,BF=CF。
∵CF=BE,∴BE=EC=CF=BF。∴四邊形BECF是菱形。
當(dāng)BC=AC時(shí),∠ACB=90°,∠A=45°,∴∠EBC=45°。∴∠EBF=2∠EBC=2×45°=90°。∴菱形BECF是正方形。故選項(xiàng)A不符合題意。
當(dāng)CF⊥BF時(shí),利用正方形的判定得出,菱形BECF是正方形,故選項(xiàng)B不符合題意。
當(dāng)BD=DF時(shí),利用正方形的判定得出,菱形BECF是正方形,故選項(xiàng)C不符合題意。
當(dāng)AC=BD時(shí),無(wú)法得出菱形BECF是正方形,故選項(xiàng)D符合題意。
故選D。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個(gè)數(shù)是 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)共有800名學(xué)生,準(zhǔn)備調(diào)查他們對(duì)“低碳”知識(shí)的了解程度.
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案:
方案一:調(diào)查七年級(jí)部分女生;
方案二:調(diào)查七年級(jí)部分男生;
方案三:到七年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請(qǐng)問(wèn)其中最具有代表性的一個(gè)方案是 ;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖(如圖①、圖②所示),請(qǐng)你根據(jù)圖中信息,將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“比較了解”所在扇形的圓心角的度數(shù)是 .
(4)請(qǐng)你估計(jì)該校七年級(jí)約有 名學(xué)生比較了解“低碳”知識(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形四個(gè)角上,分別剪去大小相等的等腰直角三角形,當(dāng)三角形的直角邊由小變大時(shí),陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:
三角形的直角邊長(zhǎng)/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
陰影部分的面積/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
(1)在這個(gè)變化過(guò)程中,自變量、因變量各是什么?
(2)請(qǐng)將上述表格補(bǔ)充完整;
(3)當(dāng)?shù)妊苯侨切蔚闹苯沁呴L(zhǎng)由增加到時(shí),陰影部分的面積是怎樣變化的?
(4)設(shè)等腰直角三角形的直角邊長(zhǎng)為,圖中陰影部分的面積為,寫(xiě)出與的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說(shuō)法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對(duì)稱軸是直線x=0
D. 拋物線在對(duì)稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織部分師生從學(xué)校(A地)到300千米外的B地進(jìn)行紅色之旅(革命傳統(tǒng)教育),租用了客運(yùn)公司甲、乙兩輛車,其中乙車速度是甲車速度的,兩車同時(shí)從學(xué)校出發(fā),以各自的速度勻速行駛,行駛2小時(shí)后甲車到達(dá)服務(wù)區(qū)C地,此時(shí)兩車相距40千米,甲車在服務(wù)區(qū)休息15分鐘戶按原速度開(kāi)往B地,乙車行駛過(guò)程中未做停留.
(1)求甲、乙兩車的速度?
(2)問(wèn)甲車在C地結(jié)束休息后再行駛多長(zhǎng)時(shí)間,甲、乙兩車相距30千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,按下列要求畫(huà)圖或填空;
(1)畫(huà)一條線段AB使它的另一端點(diǎn)B落在格點(diǎn)上(即小正方形的頂點(diǎn)),且AB=2;
(2)以(1)中的AB為邊畫(huà)一個(gè)等腰△ABC,使點(diǎn)C落在格點(diǎn)上,且另兩邊的長(zhǎng)都是無(wú)理數(shù);
(3)△ABC的周長(zhǎng)為 ,面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC 中,∠ACB=90°,BC=2,AC=3,以點(diǎn)C為圓心、CB為半徑的圓交AB于點(diǎn)D,過(guò)點(diǎn)A作AE∥CD,交BC延長(zhǎng)線于點(diǎn)E.
(1)求CE的長(zhǎng);
(2)P是 CE延長(zhǎng)線上一點(diǎn),直線AP、CD交于點(diǎn)Q.
①如果△ACQ ∽△CPQ,求CP的長(zhǎng);
②如果以點(diǎn)A為圓心,AQ為半徑的圓與⊙C相切,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①、圖②、圖③均是4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1.
(1)在圖①、圖②中,以格點(diǎn)為頂點(diǎn),線段AB為一邊,分別畫(huà)一個(gè)平行四邊形和菱形,并直接寫(xiě)出它們的面積.(要求兩個(gè)四邊形不全等)
(2)在圖③中,以點(diǎn)A為頂點(diǎn),另外三個(gè)頂點(diǎn)也在格點(diǎn)上,畫(huà)一個(gè)面積最大的正方形,并直接寫(xiě)出它的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com