【題目】如圖,在RtABC中,∠ACB90°,∠ABC的平分線BDAC于點(diǎn)D

1)求作⊙O,使得點(diǎn)O在邊AB上,且⊙O經(jīng)過B、D兩點(diǎn)(要求尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)證明AC與⊙O相切.

【答案】1)見解析;(2)見解析

【解析】

1)作BD的垂直平分線交ABO,再以O點(diǎn)為圓心,OB為半徑作圓即可;

2)證明ODBC得到∠ODC=90°,然后根據(jù)切線的判定定理可判斷AC為⊙O的切線.

解:(1)如圖,⊙O為所作;

2)證明:連接OD,如圖,
BD平分∠ABC,
∴∠CBD=ABD
OB=OD,
∴∠OBD=ODB
∴∠CBD=ODB,
ODBC,
∴∠ODA=ACB
又∠ACB=90°,
∴∠ODA=90°
ODAC,
∵點(diǎn)D是半徑OD的外端點(diǎn),
AC與⊙O相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計(jì)圖和圖2扇形統(tǒng)計(jì)圖,但均不完整.請你根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)求參加比賽的學(xué)生共有多少名?并補(bǔ)全圖1的條形統(tǒng)計(jì)圖.

2)在圖2扇形統(tǒng)計(jì)圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;

3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)從點(diǎn)出發(fā)以每秒2個單位的速度沿向終點(diǎn)運(yùn)動,過點(diǎn)的垂線交折線于點(diǎn),當(dāng)點(diǎn)不和的頂點(diǎn)重合時,以為邊作等邊三角形,使點(diǎn)和點(diǎn)在直線的同側(cè),設(shè)點(diǎn)的運(yùn)動時間為(秒).

1)求等邊三角形的邊長(用含的代數(shù)式表示);

2)當(dāng)點(diǎn)落在的邊上時,求的值;

3)設(shè)重合部分圖形的面積為,求的函數(shù)關(guān)系式;

4)作直線,設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)分別為,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現(xiàn)要購買A、B兩種獎品共100件,總費(fèi)用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家出門去遛狗(哈士奇,又名“撤手沒”),當(dāng)走到200米時狗繩突然斷裂,脫了韁的哈士奇飛速跑開,小明也快速追狗,已知狗速是人速的2倍,4分鐘時哈土奇聽到小明的呼喊聲,調(diào)頭跑向小明,很快人狗相遇,但是哈士奇并沒有停留的意思,繼續(xù)跑向家中,小明調(diào)頭繼續(xù)追趕.脫韁之后狗和人的速度都不變.遛狗路程s(米)與時間t(分鐘)之間的函數(shù)圖象如圖所示,下列說法:a500;Y點(diǎn)縱坐標(biāo)為580;b2;c7;d9;其中正確的個數(shù)是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)EAD邊上,點(diǎn)FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時如下結(jié)論:①這個函數(shù)圖象的頂點(diǎn)始終在直線y=-x+1上;②存在一個m的值,使得函數(shù)圖象的頂點(diǎn)與軸的兩個交點(diǎn)構(gòu)成等腰直角三角形;③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時,yx的增大而增大,則m的取值范圍為m≥2其中錯誤結(jié)論的序號是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸的一個交點(diǎn)為B(4,0),另一個交點(diǎn)為A,且與y軸相交于C點(diǎn)

(1)求m的值及C點(diǎn)坐標(biāo);

(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時M點(diǎn)坐標(biāo);若不存在,請簡要說明理由

(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對稱點(diǎn)為Q

①當(dāng)四邊形PBQC為菱形時,求點(diǎn)P的坐標(biāo);

②點(diǎn)P的橫坐標(biāo)為t(0t4),當(dāng)t為何值時,四邊形PBQC的面積最大,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案