【題目】某人沿一條直路行走,此人離出發(fā)地的距離千米與行走時間分鐘的函數(shù)關(guān)系如圖所示,請根據(jù)圖象提供的信息回答下列問題:

此人離開出發(fā)地最遠(yuǎn)距離是______ 千米;

此人在這次行走過程中,停留所用的時間為______ 分鐘;

由圖中線段OA可知,此人在這段時間內(nèi)行走的速度是每小時______ 千米;

此人在120分鐘內(nèi)共走了______ 千米.

【答案】(1) 4;(2)20;(3)4.5;(4)8.

【解析】

(1)此人最遠(yuǎn)到達(dá)了C處,所以此人離開出發(fā)地最遠(yuǎn)距離是4千米;

(2)此人到達(dá)A處時開始休息,B處又開始出發(fā),所以用了20分鐘;

(3)求速度用距離與時間的比即可,注意把分鐘化為小時;

(4)把每段的距離相加即可.

由圖象得:此人離開出發(fā)地最遠(yuǎn)距離是4千米;

此人在這次行走過程中,停留所用的時間為分鐘;

分鐘小時,

千米

此人在這段時間內(nèi)行走的速度是每小時千米;

此人在120分鐘內(nèi)共走了千米

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)A(a,0),B(0,b),且a、b滿足=0, □ABCD的邊ADy軸交于點(diǎn)E(0,2),且EAD中點(diǎn),雙曲線經(jīng)過C、D兩點(diǎn).

(1)求k的值;

(2)點(diǎn)P在雙曲線上,點(diǎn)Qy軸上,若以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo);

(3)以線段AB為對角線作正方形AFBH(如圖3),點(diǎn)T是邊AF上一動點(diǎn),MHT的中點(diǎn),MNHT,交ABN,當(dāng)TAF上運(yùn)動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形中,上一動點(diǎn),點(diǎn)的延長線上,平分,交于點(diǎn).

(1)如圖①,連接,求證: ;

(2)如圖②,當(dāng)時,求證: ;

(3)如圖③,當(dāng)時,若平分,求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,點(diǎn)DEAB上,將ACD、BCE分別沿CDCE翻折,點(diǎn)AB分別落在點(diǎn)A′、B′的位置,再將A′CD、B′CE分別沿A′CB′C翻折,點(diǎn)D與點(diǎn)E恰好重合于點(diǎn)O,則∠A′OB′的度數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,延長FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為

(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?

(3)如圖3,點(diǎn)A在點(diǎn)O的北偏西30°處,點(diǎn)B在點(diǎn)O的南偏東70°處,且AO=BO,點(diǎn)A沿正東方向移動249米到達(dá)E處,點(diǎn)B沿北偏東50°方向移動334米到達(dá)點(diǎn)F處,從點(diǎn)O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,且ABCDE、FAD上兩點(diǎn),CEAD,BFAD.若CEaBFb,EFc,則AD的長為(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點(diǎn)M、P,AC的垂直平分線分別交AC、BC于點(diǎn)N、Q,∠BAC=110°,則∠PAQ=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過點(diǎn)A(4,﹣5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點(diǎn)E在y軸的正半軸上,且∠BEO=∠ABC,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算,正確的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

同步練習(xí)冊答案