【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑是5,點(diǎn)A為⊙O上一點(diǎn),AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,若四邊形ABOC的面積為12,寫出一個(gè)符合條件的點(diǎn)A的坐標(biāo) .
【答案】(3,4)
【解析】解:設(shè)點(diǎn)A坐標(biāo)為(x,y), 則AO2=x2+y2=25,
由xy=12或xy=﹣12,
當(dāng)xy=12時(shí),
可得(x+y)2﹣2xy=25,即(x+y)2﹣24=25,
∴x+y=7或x+y=﹣7,
①若x+y=7,即y=7﹣x,代入xy=12得x2﹣7x+12=0,
解得:x=3或x=4,
當(dāng)x=3時(shí),y=4;當(dāng)x=4時(shí),y=3;
即點(diǎn)A(3,4)或(4,3);
②若x+y=﹣7,則y=﹣7﹣x,代入xy=12得:x2+7x+12=0,
解得:x=﹣3或x=﹣4,
當(dāng)x=﹣3時(shí),y=﹣4;當(dāng)x=﹣4時(shí),y=﹣3;
即點(diǎn)A(﹣3,﹣4)或(﹣4,﹣3);
當(dāng)xy=﹣12時(shí),
可得(x+y)2﹣2xy=25,即(x+y)2+24=25,
∴x+y=1或x+y=﹣1,
③若x+y=1,即y=1﹣x,代入xy=﹣12得x2﹣x﹣12=0,
解得:x=﹣3或x=4,
當(dāng)x=﹣3時(shí),y=4;當(dāng)x=4時(shí),y=﹣3;
即點(diǎn)A(﹣3,4)或(4,﹣3);
④若x+y=﹣1,則y=﹣1﹣x,代入xy=﹣12得:x2+x﹣12=0,
解得:x=3或x=﹣4,
當(dāng)x=3時(shí),y=﹣4;當(dāng)x=﹣4時(shí),y=3;
即點(diǎn)A(3,﹣4)或(﹣4,3);
所以答案是:(3,4),(答案不唯一).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD的頂點(diǎn)A(﹣ ,0),∠DAB=60°,若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D→A→B→…的路徑,在菱形的邊上以每秒0.5個(gè)單位長(zhǎng)度的速度移動(dòng),則第2017秒時(shí),點(diǎn)P的坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y= 的圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出不等式kx+b﹣ <0的解集;
(3)P是x軸上的一點(diǎn),且滿足△APB的面積是9,寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+1的圖象與反比例函數(shù) (k為常數(shù),且k≠0)的圖象都經(jīng)過(guò)點(diǎn)A(m,2).
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù)y=x+1的圖象與x軸交于點(diǎn)B,若點(diǎn)P是x軸上一點(diǎn),且滿足△ABP的面積是2,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:
“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.
例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=20.
(1)已知點(diǎn)A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三點(diǎn)的“矩面積”為12,求點(diǎn)P的坐標(biāo);
②直接寫出A,B,P三點(diǎn)的“矩面積”的最小值.
(2)已知點(diǎn)E(4,0),F(xiàn)(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F(xiàn),M三點(diǎn)的“矩面積”為8,求m的取值范圍;
②直接寫出E,F(xiàn),N三點(diǎn)的“矩面積”的最小值及對(duì)應(yīng)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=﹣2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線y=kx+b(k,b是常數(shù),k≠0)經(jīng)過(guò)點(diǎn)A,與y軸交于點(diǎn)C,且OC=OA.
(1)求點(diǎn)A的坐標(biāo)及k的值;
(2)點(diǎn)C在x軸的上方,點(diǎn)P在直線y=﹣2x+4上,若PC=PB,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.哥哥的身高比弟弟高是必然事件
B.今年中秋節(jié)有雨是不確定事件
C.隨機(jī)拋一枚均勻的硬幣兩次,都是正面朝上是不可能事件
D.“彩票中獎(jiǎng)的概率為 ”表示買5張彩票肯定會(huì)中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,且OA=OB,CA=CB,OA交⊙O于點(diǎn)E.
(1)證明:直線AB與⊙O相切;
(2)若AE=a,AB=b,求⊙O的半徑;(結(jié)果用a,b表示)
(3)過(guò)點(diǎn)C作弦CD⊥OA于點(diǎn)H,試探究⊙O的直徑與OH、OB之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年起,深圳市實(shí)施行人闖紅燈違法處罰,處罰方式分為四類:“罰款20元”、“罰款50元”、“罰款100元”、“穿綠馬甲維護(hù)交通”.如圖是實(shí)施首日由某片區(qū)的執(zhí)法結(jié)果整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)實(shí)施首日,該片區(qū)行人闖紅燈違法受處罰一共人;
(2)在所有闖紅燈違法受處罰的行人中,穿綠馬甲維護(hù)交通所占的百分比是%;
(3)據(jù)了解,“罰款20元”人數(shù)是“罰款50元”人數(shù)的2倍,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)根據(jù)(3)中的信息,在扇形統(tǒng)計(jì)圖中,“罰款20元”所在扇形的圓心角等于度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com