【題目】(1)如圖1,ABC中,∠A,PBC邊上的一點(diǎn),,是點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn),連結(jié),分別交ABAC于點(diǎn)D、E.

①若,求的度數(shù);

②請(qǐng)直接寫出∠A的數(shù)量關(guān)系:___________________________;

(2)如圖2,在ABC中,若∠BAC,用三角板作出點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn),(不寫作法,保留作圖痕跡),試判斷點(diǎn),與點(diǎn)A是否在同一直線上,并說明理由.

【答案】164°;(2)∠DPE=180°-2A;(3)在.

【解析】1)①由軸對(duì)稱的性質(zhì)以及四邊形內(nèi)角和為360°可得:∠DPP1+∠DPE+∠EPP2+∠A=180°(i),由三角形外角的性質(zhì)以及三角形內(nèi)角和為180°得到2DPP1+∠DPE+2EPP2=180°(ii),解方程組即可得到結(jié)論

2)由①得∠DPP1+∠DPE+∠EPP2+∠A=180°(i),2DPP1+∠DPE+2EPP2=180° (ii),解方程組即可得到結(jié)論

3)連接APAP1、AP2.根據(jù)軸對(duì)稱的性質(zhì),可得:∠4=1,∠3=2, 由∠BAC=90°,得到∠3+4=90°,即有∠1+2+3+4=180°,從而得到結(jié)論

1)①∵點(diǎn)P、點(diǎn)P1關(guān)于直線AB對(duì)稱,點(diǎn)P、點(diǎn)P2關(guān)于直線AC對(duì)稱,∴PD=P1D,PE=P2E,∴∠P1=∠DPP1,∠P2=∠EPP2,∴∠EDP=2DPP1,∠DEP=2EPP2,∠DPP1+∠DPE+∠EPP2+∠A=180°(i

2DPP1+∠DPE+2EPP2=180° (ii

iii)得:∠DPP1+∠EPP2=∠A,

又∵∠A=58°,∴∠DPP1+∠EPP2=58°

∴∠DPE=64°

2DPE=180°-2∠A理由如下

由①得DPP1+∠DPE+∠EPP2+∠A=180°(i

2DPP1+∠DPE+2EPP2=180° (ii

i)×2-(ii)得:2A-∠DPE=180°,

DPE=180°-2∠A

3)點(diǎn)P1,A,P2在同一條直線上.理由如下:

連接AP、AP1、AP2

根據(jù)軸對(duì)稱的性質(zhì),可得:∠4=1,∠3=2

∵∠BAC=90°,即∠1+2=90°,

∴∠3+4=90°,

∴∠1+2+3+4=180°,

即∠P1AP2=180°,

∴點(diǎn)P1 、AP2在同一條直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

《張丘建算經(jīng)》是一部數(shù)學(xué)問題集,其內(nèi)容、范圍與《九章算術(shù)》相仿.其中提出并解決了一個(gè)在數(shù)學(xué)史上非常著名的不定方程問題,通常稱為百雞問題今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一,凡百錢買雞百只,問雞翁、母、雛各幾何.

譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢,現(xiàn)在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?結(jié)合你學(xué)過的知識(shí),解決下列問題:

(1)若設(shè)公雞有x只,母雞有y只,

①則小雞有______只,買小雞一共花費(fèi)______文錢;(用含x,y的式子表示)

②根據(jù)題意列出一個(gè)含有xy的方程:______;

(2)若對(duì)百雞問題增加一個(gè)條件:公雞數(shù)量是母雞數(shù)量的3倍,求此時(shí)公雞、母雞、小雞各有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長(zhǎng)方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=B=C=D=90°,點(diǎn)E在線段AB上以lcms的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),與此同時(shí)點(diǎn)F在線段BC上由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間均為ts

1)若點(diǎn)F的運(yùn)動(dòng)速度與點(diǎn)E的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí):

①判斷BEFADE是否全等?并說明理由;

②求∠EDF的度數(shù).

2)如圖2,將圖1中的長(zhǎng)方形ABCD改為梯形ABCD,且∠A=B=70°,AB=7cm,AD=BC=5cm,其他條件不變.設(shè)點(diǎn)F的運(yùn)動(dòng)速度為xcm/s.是否存在x的值,使得BEFADE全等?若存在,直接寫出相應(yīng)的xt的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)8×10的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1,△ABC的頂點(diǎn)均在格點(diǎn)上

(1)畫出ABC關(guān)于直線OM對(duì)稱的圖形.

(2)畫出ABC關(guān)于點(diǎn)O的中心對(duì)稱圖形.

(3)△組成的圖形__________ 軸對(duì)稱圖形. (填不是”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場(chǎng)中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.

(1)請(qǐng)你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線交于A點(diǎn),且點(diǎn)A的橫坐標(biāo)是4.雙曲線上有一動(dòng)點(diǎn)Cmn, .過點(diǎn)A軸垂線,垂足為B,過點(diǎn)C軸垂線,垂足為D,聯(lián)結(jié)OC

1)求的值;

2)設(shè)的重合部分的面積為S,求Sm的函數(shù)關(guān)系;

3)聯(lián)結(jié)AC,當(dāng)?shù)冢?/span>2)問中S的值為1時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABBC,∠1+∠290°,∠2=∠3BEDF平行嗎?為什么?

(解析)解:BEDF

ABBC

∴∠ABC   °,

即∠3+∠4   °.

又∵∠1+∠290°,

且∠2=∠3,

      

理由是:   

BEDF

理由是:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191130日上午符離大道正式開通,同時(shí)宿州至徐州的K902路城際公交開通試運(yùn)營(yíng),小明先乘K902路城際公交車到五柳站下車,再步行到五柳景區(qū)游玩,從出發(fā)地到五柳景區(qū)全程31千米,共用了1個(gè)小時(shí),已知步行的速度每小時(shí)4千米,K902路城際公交的速度是步行速度的10倍,求小明乘公交車所行駛的路程和步行的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,學(xué)校準(zhǔn)備在如圖所示的矩形ABCD空地上進(jìn)行綠化,規(guī)劃在中間的一塊四邊形MNQP上種花,其余的四塊三角形上鋪設(shè)草坪,要求AM=AN=CP=CQ,已知BC=24米,AB=40米,設(shè)AN=x米,種花的面積為y1平方米,草坪面積y2平方米.

(1)分別求y1和y2與x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

(2)當(dāng)AN的長(zhǎng)為多少米時(shí),種花的面積為440平方米?

(3)若種花每平方米需200元,鋪設(shè)草坪每平方米需100元,現(xiàn)設(shè)計(jì)要求種花的面積不大于440平方米,設(shè)學(xué)校所需費(fèi)用W(元),求W與x之間的函數(shù)關(guān)系式,并求出學(xué)校所需費(fèi)用的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案