【題目】如圖,四邊形OP1A1B1、A1P2A2B2、A2P3A3B3、……、An1PnAnBn都是正方形,對(duì)角線OA1、A1A2、A2A3、……、An1An都在y軸上(n≥2),點(diǎn)P1(x1,y1),點(diǎn)P2(x2,y2),……,點(diǎn)Pn(xn,yn)在反比例函數(shù)y (x>0)的圖象上,已知B1 (-1,1)。

(1)反比例函數(shù)解析式為________

(2)求點(diǎn)P1和點(diǎn)P2的坐標(biāo);

(3)點(diǎn)Pn的坐標(biāo)為____________(用含n的式子表示),△PnBnO的面積為__________(直接填答案)

【答案】 y Pn, 1

【解析】1)由四邊形OP1A1B1為正方形且OA1是對(duì)角線知B1P1關(guān)于y軸對(duì)稱,得出點(diǎn)P11,1),據(jù)此可得答案;

2)連接P2B2P3B3,分別交y軸于點(diǎn)EF,由點(diǎn)P1坐標(biāo)及正方形的性質(zhì)知OA1=2據(jù)此可設(shè)P2的坐標(biāo)為(a,a+2),代入解析式求得a的值即可,同理可得點(diǎn)P3的坐標(biāo)

3)由=2=2×=1,=2=2×=1可知△PnBnO的面積為1,根據(jù)P111)、P21,+1)、P3+)知點(diǎn)Pn的坐標(biāo)為(+).

1)在正方形OP1A1B1,OA1是對(duì)角線,B1P1關(guān)于y軸對(duì)稱.

B1(﹣1,1),P11,1).

k=1×1=1即反比例函數(shù)解析式為y=;

2)連接P2B2P3B3,分別交y軸于點(diǎn)EF, 又點(diǎn)P1的坐標(biāo)為(1,1),OA1=2,設(shè)點(diǎn)P2的坐標(biāo)為(a,a+2),代入y=a=1,故點(diǎn)P2的坐標(biāo)為(1+1),A1E=A2E=1OA2=OA1+A1A2=2,設(shè)點(diǎn)P3的坐標(biāo)為(bb+2),代入y=x0)可得b=故點(diǎn)P3的坐標(biāo)為(+).

3=2=2×=1,=2=2×=1,…

∴△PnBnO的面積為1,P111)、P21,+1)、P3+),知點(diǎn)Pn的坐標(biāo)為(+).

故答案為:+),1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在元旦期間,某商場(chǎng)投入13800元資金購(gòu)進(jìn)甲、乙兩種商品共500件,兩種商品的成本價(jià)和銷售價(jià)如下表所示:

1)該商場(chǎng)購(gòu)進(jìn)兩種商品各多少件?

2)這批商品全部銷售完后,該商場(chǎng)共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),與軸交于點(diǎn)

填空:________;

點(diǎn)在拋物線上,且,求面積的最大值;

設(shè)為線段上一點(diǎn)(不含端點(diǎn)),連接,一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒一個(gè)單位速度運(yùn)動(dòng)到點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到后停止,當(dāng)點(diǎn)的坐標(biāo)是多少時(shí),點(diǎn)在整個(gè)運(yùn)動(dòng)中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為10,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=45°,AHEF于點(diǎn)H,AH=10,連接BD,分別交AE、AH、AF于點(diǎn)P、G、Q.

(1)求CEF的周長(zhǎng);

(2)若EBC的中點(diǎn),求證:CF=2DF;

(3)連接QE,求證:AQ=EQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F

求證:(1)FCAD;(2)ABBC+AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形A'B'C'D'在矩形ABCD的內(nèi)部,ABA'B',ADA'D',且AD=12,AB=6,設(shè)ABA'B'、BCB'C'、CDC'D'、DAD'A'之間的距離分別為a,b,c,d,

(1)a=b=c=d=2,矩形A'B'C'D'∽矩形ABCD嗎,為什么?

(2)若矩形A'B'C'D'∽矩形ABCD,a,b,c,d應(yīng)滿足什么等量關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰直角三角形ABC中,∠ACB90°,BCm,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,過點(diǎn)DDECBCB的延長(zhǎng)線于點(diǎn)E,連接CD

1)直接寫出BCD的面積為   (用含m的式子表示).

2)如圖2,在一般的RtABC中,∠ACB90°,BCm,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,用含m的式子表示BCD的面積,并說明理由.

3)如圖3,在等腰ABC中,ABAC,BC8,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,則BCD的面積為   ;若BCm,則BCD的面積為   (用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角坐標(biāo)平面內(nèi)的兩點(diǎn)A(3,2),點(diǎn)B (6,0)過點(diǎn)BY軸的平行線交直線OA于點(diǎn)C

1)求直線OA所對(duì)應(yīng)的函數(shù)解析式

2)若某一個(gè)反比例函數(shù)的圖像經(jīng)過點(diǎn)A,且交BC于點(diǎn)D,聯(lián)結(jié)AD,ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PECD相交于點(diǎn)O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長(zhǎng).

【答案】1見解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH,再利用等量代換得到PE=DH.

(2) 設(shè)DP=x RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OE,D=∠E=90°,DOP=∠EOH,

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD,

PE=DH.

2)解:設(shè)DP=x,則EH=x,BH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x,

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2,

x=,

DP=

型】解答
結(jié)束】
25

【題目】某文教店老板到批發(fā)市場(chǎng)選購(gòu)A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購(gòu)進(jìn)A種套裝的數(shù)量是用75元購(gòu)進(jìn)B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?

(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購(gòu)進(jìn)B品牌的數(shù)量比購(gòu)進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購(gòu)進(jìn)A品牌工具套裝多少套?

查看答案和解析>>

同步練習(xí)冊(cè)答案