如圖,在△ABC中,D是邊AB的中點(diǎn),DE∥BC交AC于點(diǎn)E.求證:AE=EC

見解析

解析試題分析:先判定△ADE和△ABC相似,再根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求解即可.
試題解析:∵DE∥BC,
∴△ADE∽△ABC,

∵D點(diǎn)是邊AB的中點(diǎn),
∴AB=2AD,
,
∴AC=2AE,
∴AE=CE.
考點(diǎn): 三角形中位線定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,在長(zhǎng)為8,寬為4的矩形中,截去一個(gè)矩形,使得留下的矩形(圖中陰影部分)與原矩形相似,則留下矩形的面積是         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,AB=4,AC=3,D、E分別是AB、AC上的動(dòng)點(diǎn),在邊AC上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與△ABC相似.
(1)當(dāng)AD=2時(shí),求AE的長(zhǎng);
(2)當(dāng)AD=3時(shí),求AE的長(zhǎng);
(3)通過上面兩題的解答,你發(fā)現(xiàn)了什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長(zhǎng)BE交DF于點(diǎn)G.

(1)求證:△BDG∽△DEG;
(2)若EG·BG=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,點(diǎn)O為矩形ABCD的對(duì)稱中心,AB=10cm,BC=12cm,點(diǎn)E、F、G分別從A、B、C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向勻速運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)F的運(yùn)動(dòng)速度為3cm/s,點(diǎn)G的運(yùn)動(dòng)速度為1.5cm/s,當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,△EBF關(guān)于直線EF的對(duì)稱圖形是△EB′F.設(shè)點(diǎn)E、F、G運(yùn)動(dòng)的時(shí)間為t(單位:s).

(1)當(dāng)t=           s時(shí),四邊形EBFB′為正方形;
(2)若以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似,求t的值;
(3)是否存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4,將這副直角三角板按如圖(1)所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BA與FD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)A時(shí)停止運(yùn)動(dòng).

(1)如圖(2),當(dāng)三角板DEF運(yùn)動(dòng)到點(diǎn)D與點(diǎn)A重合時(shí),設(shè)EF與BC交于點(diǎn)M,則∠EMC=     度;

(2)如圖(3),在三角板DEF運(yùn)動(dòng)過程中,當(dāng)EF經(jīng)過點(diǎn)C時(shí),求FC的長(zhǎng);

(3)在三角板DEF運(yùn)動(dòng)過程中,當(dāng)D在BA的延長(zhǎng)線上時(shí),設(shè)BF=x,兩塊三角板重迭部分的面積為y.求y與x的函數(shù)關(guān)系式,并求出對(duì)應(yīng)的x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是△的角平分線,上的一點(diǎn),且,,

(1)求證:△∽△
(2)求證:△∽△;
(3)求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在△ABC中,AB=AC,∠A=36°,∠ABC的平分線交AC于D,

(1)求證:△ABC∽△BCD;
(2)若BC=2,求AB的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀理解:
如圖1,若在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E與點(diǎn)A,B不重合),分別連結(jié)ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問題:
(1)如圖1,若∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),請(qǐng)直接寫出的值.

圖1                 圖2                       圖3

查看答案和解析>>

同步練習(xí)冊(cè)答案