【題目】如圖,,EAB上的一點,且,

求證:;

,請求出CD的長.

【答案】(1)見解析;(2) 10.

【解析】

(1)根據(jù)已知可得到∠A=∠B=90°,DE=CE,AD=BE從而利用HL判定兩三角形全等;

(2)由三角形全等可得到對應(yīng)角相等,對應(yīng)邊相等,由已知可推出∠DEC=90°,由已知我們可求得BE、AE的長,再利用勾股定理求得ED、DC的長.

解:(1)∵AD∥BC,∠A=90°,∠1=∠2,

∴∠A=∠B=90°,DE=CE.

∵AD=BE,

∴△ADE≌△BEC.

(2)由△ADE≌△BEC得∠AED=∠BCE,AD=BE.

∴∠AED+∠BEC=∠BCE+∠BEC=90°.

∴∠DEC=90°.

又∵AD=6,AB=14,

∴BE=AD=6,AE=14-6=8.

∵∠1=∠2,

∴ED=EC==10.

∴DC==10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE是ABC的中位線,F(xiàn)是DE的中點,CF的延長線交AB于點G,若CEF的面積為12cm2,則SDGF的值為( )

A.4cm2 B.6cm2 C.8cm2 D.9cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級進行法律知識競賽,共有30道題,答對一道題得4分,不答或答錯一道題扣2分.

(1)小紅同學(xué)參加了競賽,成績是96分,請問小紅在競賽中答對了多少題?

(2)小明也參加了競賽,考完后他說:“這次竟賽中我一定能拿到110分.”請問小明有沒有可能拿到110分?試用方程的知識來說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是  

A. 有兩個角和一條邊對應(yīng)相等的兩個三角形全等

B. 有一條邊和一個銳角對應(yīng)相等的兩個直角三角形全等

C. 有兩邊和其中一邊的對角對應(yīng)相等的兩個三角形全等

D. 有兩條直角邊對應(yīng)相等的兩個直角三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“WJ一號”水稻種子,當(dāng)年種植,當(dāng)年收割,當(dāng)年出水稻產(chǎn)量,(以后每年要出產(chǎn)量還需重要新種植),某村2014、2015、2016年連續(xù)嘗試種植了此水稻種子.2015年和2016年種植面積都比上年減少相同的數(shù)量,若2016年平均每公頃水稻產(chǎn)量比2015年增加的百分數(shù)是2015年比2014年增加的百分數(shù)的1.25倍,2016年比2014年種植面積減少的百分數(shù)與2016年水稻總產(chǎn)量比2014年增加的百分數(shù)相同,都等于2015年比上年平均每公頃水稻產(chǎn)量增加的百分數(shù).
(1)求2016年平均每公頃水稻產(chǎn)量比2015年增加的百分數(shù);
(2)求2015年這種水稻總產(chǎn)量比上年增加的百分數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加戶外活動的情況,和諧中學(xué)對學(xué)生每天參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:

(1)求被抽樣調(diào)查的學(xué)生有多少人?并補全條形統(tǒng)計圖;

(2)每天戶外活動時間的中位數(shù)是 小時?

(3)該校共有1850名學(xué)生,請估計該校每天戶外活動時間超過1小時的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備購進一批排球和籃球,已知1個排球和2個籃球共需320元,3個排球和1個籃球共需360元.
(1)求一個排球和一個籃球的售價各是多少元?
(2)學(xué)校準(zhǔn)備購進這種排球和籃球共40個,且籃球的數(shù)量不少于排球數(shù)量的3倍,求最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在坐標(biāo)系中作出函數(shù)y=2x+6 的圖象,利用圖象解答下列問題:

(1)求方程2x+6=0 的解;

(2)求不等式2x+6>4 的解集;

(3)若-2≤y≤2 ,求 x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案