【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為( 。
A. 1 B. ﹣5 C. 4 D. 1或﹣5
【答案】D
【解析】
試題
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.
解:如圖:
∵四邊形ABCD、HBEO、OECF、GOFD為矩形,
又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,
∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,
∴S四邊形CEOF=S四邊形HAGO=2×3=6,
∴xy=k2+4k+1=6,
解得,k=1或k=﹣5.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 A、B是線段MN上的兩點,MN4,MA1,MB1.以A為中心順 時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,使MN 兩點重合成一點C,構(gòu)成△ABC,設(shè)ABx.(1)則x的取值范圍是_________;(2)△ABC的最大面積是_________.
C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,是邊的中點,點在射線上,過作于,設(shè).
(1)求證:;
(2)當也是邊中點時,求的值;
(3)若以,,為頂點的三角形也與相似,試求的值;
(4)當點與點重合時,設(shè)交于點,試判斷與的大小關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC是⊙O的直徑,過點B作BE⊥AD,垂足為點E,AB平分∠CAE.
(1)判斷BE與⊙O的位置關(guān)系,并說明理由;
(2)若∠ACB=30°,⊙O的半徑為4,請求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,Rt△OCD的一邊OC在x軸上,∠C=90°,點D在第一象限,OC=3,DC=4,反比例函數(shù)的圖象經(jīng)過OD的中點A.
(1)求點A的坐標及該反比例函數(shù)的解析式;
(2)若該反比例函數(shù)的圖象與Rt△OCD的另一邊DC交于點B,求過A、B兩點的直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)y=(x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數(shù)圖象上的一點,且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸邊點B在其北偏東45°方向,然后向西走60m到達C點,測得點B在點C的北偏東60°方向,如圖2.
(1)求∠CBA的度數(shù).
(2)求出這段河的寬(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,
(1)隨機從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】奧林匹克公園觀光塔由五座高度不等、錯落有致的獨立塔組成.在綜合實踐活動課中,某小組的同學(xué)決定利用測角儀測量這五座塔中最高塔的高度(測角儀高度忽略不計).他們的操作方法如下:如圖,他們先在B處測得最高塔塔頂A的仰角為45°,然后向最高塔的塔基直行90米到達C處,再次測得最高塔塔頂A的仰角為58°.請幫助他們計算出最高塔的高度AD約為多少米.(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com