【題目】如圖,點(diǎn)C為y軸正半軸上一點(diǎn),點(diǎn)P(2,2)在直線y=x上,PD=PC,且PD⊥PC,過(guò)點(diǎn)D作直線AB⊥x軸于B,直線AB與直線y=x交于點(diǎn)A,直線CD與直線y=x交于點(diǎn)Q,當(dāng)∠CPA=∠PDB時(shí),則點(diǎn)Q的坐標(biāo)是_____.
【答案】(2+2,2+2).
【解析】
過(guò)P點(diǎn)作x軸的平行線交y軸于M,交AB于N,如圖,設(shè)C(0,t),OP=2,OM=BN=PM=2,CM=t﹣2,利用旋轉(zhuǎn)性質(zhì)得PC=PD,∠CPD=90°,再證明△PCM≌△DPN得到PN=CM=t﹣2,DN=PM=2,于是得到D(t,4),接著利用△OPC≌△ADP得到AD=OP=2,則A(t,4+2),于是利用y=x圖象上點(diǎn)的坐標(biāo)特征得到t=4+2,所以C(0,4+2),D(4+2,4),接下來(lái)利用待定系數(shù)求出直線CD的解析式為y=(1﹣)x+4+2,則通過(guò)解方程組可得Q點(diǎn)坐標(biāo).
解:過(guò)P點(diǎn)作x軸的平行線交y軸于M,交AB于N,如圖,設(shè)C(0,t),
∴P(2,2),
∴OP=2,OM=BN=PM=2,CM=t﹣2,
∵PC=PD,PC⊥PD
∴PC=PD,∠CPD=90°,
∴∠CPM+∠DPN=90°,
而∠CPM+∠PCM=90°,
∴∠PCM=∠DPN,
在△PCM和△DPN中,
∴△PCM≌△DPN(AAS),
∴PN=CM=t﹣2,DN=PM=2,
∴MN=t﹣2+2=t,DB=2+2=4,
∴D(t,4),
∵∠COP=∠OAB=45°,∠CPQ=∠PDB,
∴∠CPO=∠PDA,
∴△OPC≌△ADP(AAS),
∴AD=OP=2,
∴A(t,4+2),
把A(t,4+2)代入y=x得t=4+2,
∴C(0,4+2),D(4+2,4),
設(shè)直線CD的解析式為y=kx+b,
把C(0,4+2),D(4+2,4)代入得,解得,
∴直線CD的解析式為y=(1﹣)x+4+2,
解方程組得,
∴Q(2+2,2+2).
故答案為(2+2,2+2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車旅行越來(lái)越受到人們的喜愛(ài),各種品牌的山地自行車相繼投放市場(chǎng),某車行經(jīng)營(yíng)的A型車去年2月份銷售總額為3.2萬(wàn)元,今年經(jīng)過(guò)改造升級(jí)后A型車每輛銷售價(jià)比去年增加400元,若今年2月份與去年2月份賣出的A型車數(shù)量相同,則今年2月份A型車銷售總額將比去年2月份銷售總額增加25%.
(1)求今年2月份A型車每輛銷售價(jià)多少元?
(2)該車行計(jì)劃今年3月份新進(jìn)一批A型車和B型車共50輛,且B型車的進(jìn)貨數(shù)量不超過(guò)A型車數(shù)量的2倍,A.B兩種型號(hào)車的進(jìn)貨和銷售價(jià)格如表,問(wèn)應(yīng)如何進(jìn)貨才能使這批車獲利最多?
A型車 | B型車 | |
進(jìn)貨價(jià)格(元/輛) | 1100 | 1400 |
銷售價(jià)格(元/輛) | 今年的銷售價(jià)格 | 2400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在關(guān)系式中有下列說(shuō)法:①x是自變量,y是因變量;②x的數(shù)值可以任意選擇;③y是變量,它的值與x無(wú)關(guān);④用關(guān)系式表示的不能用圖像表示;⑤y與x的關(guān)系還可以用列表法和圖像法表示,其中說(shuō)法正確的是( ).
A.①②⑤B.①②④C.①③⑤D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P是⊙O內(nèi)一點(diǎn),過(guò)點(diǎn)P作⊙O的任意一條弦AB,我們把PAPB的值稱為點(diǎn)P關(guān)于⊙O的“冪值”
(1)⊙O的半徑為6,OP=4.
①如圖1,若點(diǎn)P恰為弦AB的中點(diǎn),則點(diǎn)P關(guān)于⊙O的“冪值”為_____;
②判斷當(dāng)弦AB的位置改變時(shí),點(diǎn)P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點(diǎn)P關(guān)于⊙0的“冪值”的取值范圍;
(2)若⊙O的半徑為r,OP=d,請(qǐng)參考(1)的思路,用含r、d的式子表示點(diǎn)P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;
(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的“冪值”為6,請(qǐng)直接寫出b的取值范圍_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)期間,揚(yáng)州某商場(chǎng)為了吸引顧客,開展有獎(jiǎng)促銷活動(dòng),設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,轉(zhuǎn)盤被分成4個(gè)面積相等的扇形,四個(gè)扇形區(qū)域里分別標(biāo)有“10元”、“20元”、“30元”、“40元”的字樣(如圖).規(guī)定:同一日內(nèi),顧客在本商場(chǎng)每消費(fèi)滿100元就可以轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,商場(chǎng)根據(jù)轉(zhuǎn)盤指針指向區(qū)域所標(biāo)金額返還相應(yīng)數(shù)額的購(gòu)物券,某顧客當(dāng)天消費(fèi)240元,轉(zhuǎn)了兩次轉(zhuǎn)盤.
(1)該顧客最少可得 元購(gòu)物券,最多可得 元購(gòu)物券;
(2)請(qǐng)用畫樹狀圖或列表的方法,求該顧客所獲購(gòu)物券金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字1,2,3,4四個(gè)小球,除數(shù)字不同外,小球沒(méi)有任何區(qū)別,每次實(shí)驗(yàn)先攪拌均勻.
(1)若從中任取一球,球上的數(shù)字為偶數(shù)的概率為多少?
(2)若從中任取一球(不放回),再?gòu)闹腥稳∫磺,?qǐng)用畫樹狀圖或列表格的方法求出兩個(gè)球上的數(shù)字之和為偶數(shù)的概率.
(3)若設(shè)計(jì)一種游戲方案:從中任取兩球,兩個(gè)球上的數(shù)字之差的絕對(duì)值為1為甲勝,否則為乙勝,請(qǐng)問(wèn)這種游戲方案設(shè)計(jì)對(duì)甲、乙雙方公平嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達(dá)式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在坐標(biāo)系中描出各點(diǎn),畫出三角形ABC;
(2)若三角形ABC內(nèi)有一點(diǎn)P(,)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P1(,),將三角形ABC作同樣的平移得到三角形A1B1C1,畫出平移后的三角形A1B1C1,并直接寫出點(diǎn)A1,B1,C1的坐標(biāo);
(3)求三角形ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com