【題目】如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.
(1)當把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;
(2)當△ADE繞A點旋轉(zhuǎn)到圖3的位置時,△AMN是否還是等邊三角形?若是,請給出證明;若不是,請說明理由.
【答案】(1)CD=BE.理由如下:
∵△ABC和△ADE為等邊三角形
∴AB=AC,AE=AD,∠BAC=∠EAD=60o
∵∠BAE =∠BAC-∠EAC =60o-∠EAC,
∠DAC =∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC, ∴△ABE ≌ △ACD
∴CD=BE
(2)△AMN是等邊三角形.理由如下:
∵△ABE ≌ △ACD, ∴∠ABE=∠ACD.
∵M、N分別是BE、CD的中點,∴BM=CN
∵AB=AC,∠ABE=∠ACD, ∴△ABM ≌ △ACN.
∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°
∴△AMN是等邊三角形.
【解析】試題分析:(1)CD=BE.利用“等邊三角形的三條邊相等、三個內(nèi)角都是60°”的性質(zhì)證得△ABE≌△ACD;然后根據(jù)全等三角形的對應邊相等即可求得結(jié)論CD=BE;
(2)△AMN是等邊三角形.首先利用全等三角形“△ABE≌△ACD”的對應角相等、已知條件“M、N分別是BE、CD的中點”、等邊△ABC的性質(zhì)證得△ABM≌△ACN;然后利用全等三角形的對應邊相等、對應角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一個角是60°的等腰三角形的正三角形.
解:(1)CD=BE.理由如下:
∵△ABC和△ADE為等邊三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,
∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,
∴∠BAE=∠DAC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS)
∴CD=BE;
(2)△AMN是等邊三角形.理由如下:
∵△ABE≌△ACD,
∴∠ABE=∠ACD.
∵M、N分別是BE、CD的中點,∴BM=CN
∵AB=AC,∠ABE=∠ACD,
在△ABM和△ACN中,
,
∴△ABM≌△ACN(SAS).
∴AM=AN,∠MAB=∠NAC.
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°
∴△AMN是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩盞路燈桿相距20米,一天晚上,當小明從燈甲底部向燈乙底部直行16米時,發(fā)現(xiàn)自己的身影頂部正好接觸到路燈乙的底部.已知小明的身高為1.6米,那么路燈甲的高為( )
A.7米
B.8米
C.9米
D.10米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD交BC于點E.
(1)作CF平分∠BCD交AD于點F(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,求證:△ABE≌△CDF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形叫做“箏形”.如圖,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,小詹在探究箏形的性質(zhì)時,得到如下結(jié)論:
①AC⊥BD;②AO=CO;③△ABD≌△CBD.
其中正確的結(jié)論有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,每個小立方體的棱長為1,圖1中共有1個立方體,其中1個看得見,0個看不見;圖2中共有8個小立方體,其中7個看得見,1個看不見;圖3中共有27個小立方體,其中19個看得見,8個看不見;……;則第10個圖形中,其中看得見的小立方體個數(shù)是( 。
A. 270 B. 271 C. 272 D. 273
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義:
如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1 , A2B2C2D2 , AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.
(1)已知A( 2,3),B(5,0),C( , 2).
①當 時,點A,B,C的最優(yōu)覆蓋矩形的面積為;
②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為;
(2)已知點D(1,1),點E( , ),其中點E是函數(shù) 的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,圖①是邊長為1的等邊三角形紙板,周長記為C1,沿圖①的底邊剪去一塊邊長為的等邊三角形,得到圖②,周長記為C2,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的),得圖③④…,圖n的周長記為Cn,若n≥3,則Cn-Cn-1=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,P,Q分別是BC,AC上的點,作PR⊥AB,PS⊥AC,垂足分別是R,S,若AQ=PQ,PR=PS,下面三個結(jié)淪:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正確的是( )
A. ①③ B. ②③ C. ①② D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com