【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)、B(3,0).
(1)求b、c的值;
(2)如圖1直線y=kx+1(k>0)與拋物線第一象限的部分交于D點,交y軸于F點,交線段BC于E點.求 的最大值;
(3)如圖2,拋物線的對稱軸與拋物線交于點P、與直線BC相交于點M,連接PB.問在直線BC下方的拋物線上是否存在點Q,使得△QMB與△PMB的面積相等?若存在,求出點Q的坐標;若不存在,請說明理由.
【答案】
(1)
解:將點A(﹣1,0)、B(3,0)帶入到拋物線解析式中得:
,
解得: .
(2)
解:作DN∥CF交CB于N,如圖1所示.
∵DN∥CF,
∴△DEN∽△FEC,
∴ .
∵拋物線的解析式為y=﹣x2+2x+3,
∴點C的坐標為(0,3).
∴直線BC的解析式為y=﹣x+3.
令直線y=kx+1中x=0,則y=1,
即點F的坐標為(0,1).
設點D的坐標為(m,﹣m2+2m+3),則點N的坐標為(m,﹣m+3),
∴DN=﹣m2+3m,CF=3﹣1=2,
∴ = ,
∵DN=﹣m2+3m=﹣ + 的最大值為 ,
∴ 的最大值為 .
(3)
解:假設存在符合題意的點Q.
∵拋物線的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴P點的坐標為(1,4),PM的解析式為x=1,
∵直線BC的解析式為y=﹣x+3,
∴M的坐標為(1,2),
∵點G的坐標為(1,0),
∴PM=GM=2.
設PM與x軸交于點G,過點G作作直線BC的平行線,如圖2所示.
∴過點G與BC平行的直線為y=﹣x+1.
聯(lián)立直線與拋物線解析式得: ,
解得: 或 .
∴點Q的坐標為( ,﹣ )或( ,﹣ ).
∵平行線間距離處處相等,且點M為線段PG的中點,
∴點Q到直線BC的距離與點P到直線的距離相等.
故在直線BC下方的拋物線上存在點Q,使得△QMB與△PMB的面積相等,點Q的坐標為( ,﹣ )或( ,﹣ ).
【解析】(1)將點A、B的坐標帶入到拋物線解析式中,得出關于b、c的二元一次方程組,解方程組即可得出結論;(2)作DN∥CF交CB于N,由DN∥CF可得出△DEN∽△FEC,根據(jù)相似三角形的性質(zhì)得出 ,由(1)可得出拋物線的解析式,令拋物線解析式中x=0則可得出點C的坐標,由點B、C的坐標可得出直線BC的解析式,設出點D的坐標,則可得出點N的坐標,由直線DF的解析式可得出點F的坐標,從而得出DN、CF的長度,由DN的長度結合二次函數(shù)的性質(zhì)即可得出結論;(3)假設存在符合題意的點Q.設PM與x軸交于點G,過點G作作直線BC的平行線.由拋物線的解析式可得出頂點P的坐標,由此得出對稱軸的解析式,結合直線BC的解析式可得出點M的坐標,結合點G的坐標可知PM=GM,由此得出滿足題意的點Q為“過點G與直線BC平行的直線和拋物線的交點”,由G點的坐標結合直線BC的解析式即可得出過點G與BC平行的直線的解析式,聯(lián)立直線與拋物線解析式得出關于x、y的二元二次方程組,解方程即可得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F是平行四邊形ABCD的邊AB、CD上的點,AF與DE相交于點P,BF與CE相交于點Q.若S△APD=15cm2 , S△BOC=25cm2 , 則陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.
(1)如圖(1)當射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉,DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.
(3)在圖(2)中,若AB=AC=10,BC=12,當S△DEF= S△ABC時,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4)、B(3,﹣2)、C(6,﹣3).
(1)①畫出△ABC關于x軸對稱的△A1B1C1;
②以M點為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2:1.
(2)直接寫出C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A的坐標為(1,0),P是第一象限內(nèi)任意一點,連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點P 的“雙角坐標”.例如,點(1,1)的“雙角坐標”為(45°,90°).
(1)點( , )的“雙角坐標”為;
(2)若點P到x軸的距離為 ,則m+n的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③2a+b=0;④當y>0時,x的取值范圍是﹣1<x<3;⑤當x>0時,y隨x增大而減。渲薪Y論正確的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調(diào)查了若干名學生,根據(jù)調(diào)查數(shù)據(jù)進行整理,繪制了如下的不完整統(tǒng)計圖.
請你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了名學生,其中最喜愛戲曲的有人;在扇形統(tǒng)計圖中,最喜愛體育的對應扇形的圓心角大小是 .
(2)根據(jù)以上統(tǒng)計分析,估計該校2000名學生中最喜愛新聞的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA= ,求BH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com