精英家教網 > 初中數學 > 題目詳情

【題目】課本中有一道作業(yè)題: 有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.


(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.
(2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.

【答案】
(1)解:設矩形的邊長PN=2y(mm),則PQ=y(mm),由條件可得△APN∽△ABC,

,

= ,

解得y= ,

∴PN= ×2= (mm),

答:這個矩形零件的兩條邊長分別為 mm, mm


(2)解:設PN=x(mm),矩形PQMN的面積為S(mm2),

由條件可得△APN∽△ABC,

,

= ,

解得PQ=80﹣ x.

∴S=PNPQ=x(80﹣ x)=﹣ x2+80x=﹣ (x﹣60)2+2400,

∴S的最大值為2400mm2,此時PN=60mm,PQ=80﹣ ×60=40(mm)


【解析】(1)設PN=2y(mm),則PQ=y(mm),然后根據相似三角形對應高的比等于相似比列出比例式求出即可;(2)設PN=x,用PQ表示出AE的長度,然后根據相似三角形對應高的比等于相似比列出比例式并用x表示出PN,然后根據矩形的面積公式列式計算,再根據二次函數的最值問題解答.
【考點精析】解答此題的關鍵在于理解二次函數的最值的相關知識,掌握如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a,以及對相似三角形的應用的理解,了解測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校積極開展“陽光體育”活動,共開設了跳繩、足球、籃球、跑步四種運動項目,為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
(1)求本次被調查的學生人數;
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學生,請估計全校最喜愛籃球的人數比最喜愛足球的人數多多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設函數y=(x﹣1)[(k﹣1)x+(k﹣3)](k是常數).
(1)當k取1和2時的函數y1和y2的圖象如圖所示,請你在同一直角坐標系中畫出當k取0時的函數的圖象;
(2)根據圖象,寫出你發(fā)現(xiàn)的一條結論;
(3)將函數y2的圖象向左平移4個單位,再向下平移2個單位,得到的函數y3的圖象,求函數y3的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達D點,然后打開降落傘以75°的俯角降落到地面上的B點.求他飛行的水平距離BC(結果精確到1m).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長為n的正方形OABC的邊OA,OC在坐標軸上,點A1 , A2 , …,An1為OA的n等分點,點B1 , B2 , …,Bn1為CB的n等分點,連結A1B1 , A2B2 , …,An1Bn1 , 分別交曲線y= (x>0)于點C1 , C2 , …,Cn1 . 若C15B15=16C15A15 , 則n的值為 . (n為正整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于(
A.
B.
C.4
D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】提出問題:

(1)如圖1,在正方形ABCD中,點E,H分別在BC,AB上,若AE⊥DH于點O,求證:AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點O,探究線段EF與HG的數量關系,并說明理由;
綜合運用:
(3)在(2)問條件下,HF∥GE,如圖3所示,已知BE=EC=2,EO=2FO,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD,點E在CB的延長線上,聯(lián)結AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE且與AE交于點G.
(1)求證:GF=BF.
(2)在BC邊上取點M,使得BM=BE,聯(lián)結AM交DE于點O.求證:FOED=ODEF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學活動:拼圖中的數學 數學活動課上,老師提出如下問題:
用5個邊長為1的小正方形組合一個圖形(相互之間不能重疊),然后將組合后的圖形剪拼成一個大的正方形.
合作交流:“實踐”小組:我們組合成的圖形如圖(1)所示,剪拼成大的正形的過程如圖(2),圖(3)所示.“興趣”小組:我們組合成的圖形如圖(4)所示,但我們未能將其剪拼成大的正方形.
任務:請你幫助“興趣”小組的同學,在圖(4)中畫出剪拼線,在圖(5)中畫出剪拼后的正方形.要求:剪拼線用虛線表示,剪拼后的大正方形用實線表示.

應用遷移:如圖(6),∠A=∠B=∠C=∠D=∠F=90°,AB=AF=2,EF=ED=1.
請你將該圖進行分割,使得分割后的各部分恰好能拼成一個正方形,請你在圖(5)中畫出拼圖示意圖(拼圖的各部分不能互相重疊,不能留有空隙,不要求進行說理或證明)

查看答案和解析>>

同步練習冊答案