【題目】在△ABC中,∠A=30°,D是AC邊上的點(diǎn);先將△ABC沿著BD翻折,翻折后△ABD的邊AB交AC于點(diǎn)E;又將△BCE沿著BE翻折,C點(diǎn)恰好落在BD上,此時∠BEC=78°,則原三角形的∠ABC=度.
【答案】72
【解析】在△ABC中,∠A=30°,則∠B+∠C=150°…①;
根據(jù)折疊的性質(zhì)知:∠B=3∠CBE,∠BCE=∠C;
在△CBE中,則有:∠CBE+∠BCE=180°﹣78°,即:
∠B+∠C=102°…②;
①﹣②,得:
∠B=48°,
解得∠B=72°.
所以答案是:72.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識,掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將方程x2﹣6x﹣5=0化為(x+m)2=n的形式,則m,n的值分別是( )
A.3和5
B.﹣3和5
C.﹣3和14
D.3和14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達(dá)點(diǎn)F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H,此時他(GH)在同一燈光下的影長為BH(點(diǎn)C,E,G在一條直線上).
(1)請在圖中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時在這個燈光下的影長FM(不寫畫法);
(2)求小明原來的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a≠0)經(jīng)過A(-1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在拋物線的對稱軸上,當(dāng)△ACP的周長最小時,求出點(diǎn)P的坐標(biāo);
(3) 點(diǎn)N在拋物線上,點(diǎn)M在拋物線的對稱軸上,是否存在以點(diǎn)N為直角頂點(diǎn)的Rt△DNM與Rt△BOC相似,若存在,請求出所有符合條件的點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,三角形ABC的三個頂點(diǎn)的位置如圖所示,點(diǎn)A′的坐標(biāo)是(﹣2,2),現(xiàn)將三角形ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對應(yīng)點(diǎn).
(1)請畫出平移后的三角形A′B′C′(不寫畫法),并寫出點(diǎn)B′、C′的坐標(biāo);
(2)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】遵義市某學(xué)校7位學(xué)生的中考體育測試成績(滿分40分)依次為37,40,39,37,40,38,40.則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是( )
A. 40,37B. 40,39C. 39,40D. 40,38
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的一個內(nèi)角為40°,則這個等腰三角形的頂角為( )
A.40°
B.100°
C.40°或100°
D.70°或50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點(diǎn)O,且AC⊥BD,點(diǎn)E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),依次連接各邊中點(diǎn)得到四邊形EFGH,求證:四邊形EFGH是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com